These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 19280122)

  • 1. Differences in lysine pKa values may be used to improve NMR signal dispersion in reductively methylated proteins.
    Abraham SJ; Kobayashi T; Solaro RJ; Gaponenko V
    J Biomol NMR; 2009 Apr; 43(4):239-46. PubMed ID: 19280122
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of reductive ¹³C-methylation of lysines to enhance the sensitivity of conventional NMR methods.
    Chavan TS; Abraham S; Gaponenko V
    Molecules; 2013 Jun; 18(6):7103-19. PubMed ID: 23778120
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of the side chain pKa values of the lysine residues in calmodulin.
    Zhang M; Vogel HJ
    J Biol Chem; 1993 Oct; 268(30):22420-8. PubMed ID: 8226750
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Utilization of lysine ¹³C-methylation NMR for protein-protein interaction studies.
    Hattori Y; Furuita K; Ohki I; Ikegami T; Fukada H; Shirakawa M; Fujiwara T; Kojima C
    J Biomol NMR; 2013 Jan; 55(1):19-31. PubMed ID: 23224986
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mass spectrometry assisted assignment of NMR resonances in reductively 13C-methylated proteins.
    Macnaughtan MA; Kane AM; Prestegard JH
    J Am Chem Soc; 2005 Dec; 127(50):17626-7. PubMed ID: 16351091
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Residue-specific pKa determination of lysine and arginine side chains by indirect 15N and 13C NMR spectroscopy: application to apo calmodulin.
    André I; Linse S; Mulder FA
    J Am Chem Soc; 2007 Dec; 129(51):15805-13. PubMed ID: 18044888
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of protein-ligand interactions by NMR using reductive methylation of lysine residues.
    Abraham SJ; Hoheisel S; Gaponenko V
    J Biomol NMR; 2008 Oct; 42(2):143-8. PubMed ID: 18819009
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rotamer Jumps, Proton Exchange, and Amine Inversion Dynamics of Dimethylated Lysine Residues in Proteins Resolved by pH-Dependent
    Weininger U; Modig K; Ishida H; Vogel HJ; Akke M
    J Phys Chem B; 2019 Nov; 123(46):9742-9750. PubMed ID: 31580078
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reductive methylation and pKa determination of the lysine side chains in calbindin D9k.
    Zhang M; Thulin E; Vogel HJ
    J Protein Chem; 1994 Aug; 13(6):527-35. PubMed ID: 7832981
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbon-13 NMR studies of the lysine side chains of calmodulin and its proteolytic fragments.
    Huque ME; Vogel HJ
    J Protein Chem; 1993 Dec; 12(6):695-707. PubMed ID: 8136020
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methods to identify the NMR resonances of the ¹³C-dimethyl N-terminal amine on reductively methylated proteins.
    Roberson KJ; Brady PN; Sweeney MM; Macnaughtan MA
    J Vis Exp; 2013 Dec; (82):e50875. PubMed ID: 24378713
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of trimethyllysine 115 in calmodulin by 14N and 13C NMR spectroscopy.
    Zhang M; Huque E; Vogel HJ
    J Biol Chem; 1994 Feb; 269(7):5099-105. PubMed ID: 8106489
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amine inversion in proteins. A 13C-NMR study of proton exchange and nitrogen inversion rates in N epsilon,N epsilon,N alpha,N alpha-[13C]tetramethyllysine,N epsilon,N epsilon,N alpha,N alpha-[13C]tetramethyllysine methyl ester, and reductively methylated concanavalin A.
    Goux WJ; Teherani J; Sherry AD
    Biophys Chem; 1984 Jun; 19(4):363-73. PubMed ID: 6430360
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amino group environments and metal binding properties of carbon-13 reductively methylated bovine alpha-lactalbumin.
    Gerken TA
    Biochemistry; 1984 Sep; 23(20):4688-97. PubMed ID: 6437440
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Specific 13C reductive methylation of glycophorin A. Possible relation of the N-terminal amino acid and the lysine residues to MN blood group specificities.
    Hardy RE; Batstone-Cunningham RL; Dill K
    Arch Biochem Biophys; 1983 Apr; 222(1):222-30. PubMed ID: 6404224
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intramolecular interactions of amino groups in 13C reductively methylated hen egg-white lysozyme.
    Gerken TA; Jentoft JE; Jentoft N; Dearborn DG
    J Biol Chem; 1982 Mar; 257(6):2894-900. PubMed ID: 7061454
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ca2+ coordination to backbone carbonyl oxygen atoms in calmodulin and other EF-hand proteins: 15N chemical shifts as probes for monitoring individual-site Ca2+ coordination.
    Biekofsky RR; Martin SR; Browne JP; Bayley PM; Feeney J
    Biochemistry; 1998 May; 37(20):7617-29. PubMed ID: 9585577
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lysine methylation strategies for characterizing protein conformations by NMR.
    Larda ST; Bokoch MP; Evanics F; Prosser RS
    J Biomol NMR; 2012 Oct; 54(2):199-209. PubMed ID: 22960995
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structures of four Ca2+-bound troponin C at 2.0 A resolution: further insights into the Ca2+-switch in the calmodulin superfamily.
    Houdusse A; Love ML; Dominguez R; Grabarek Z; Cohen C
    Structure; 1997 Dec; 5(12):1695-711. PubMed ID: 9438870
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [13C]Methylated ribonuclease A. 13C NMR studies of the interaction of lysine 41 with active site ligands.
    Jentoft JE; Gerken TA; Jentoft N; Dearborn DG
    J Biol Chem; 1981 Jan; 256(1):231-6. PubMed ID: 6256347
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.