These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 19280266)

  • 1. Modeling proximal tubule cell homeostasis: tracking changes in luminal flow.
    Weinstein AM; Sontag ED
    Bull Math Biol; 2009 Aug; 71(6):1285-322. PubMed ID: 19280266
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coupling of entry to exit by peritubular K+ permeability in a mathematical model of rat proximal tubule.
    Weinstein AM
    Am J Physiol; 1996 Jul; 271(1 Pt 2):F158-68. PubMed ID: 8760257
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flow-dependent transport in a mathematical model of rat proximal tubule.
    Weinstein AM; Weinbaum S; Duan Y; Du Z; Yan Q; Wang T
    Am J Physiol Renal Physiol; 2007 Apr; 292(4):F1164-81. PubMed ID: 17213461
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic transport model for cellular regulation of pH and solute concentration in the renal proximal tubule.
    Verkman AS; Alpern RJ
    Biophys J; 1987 Apr; 51(4):533-46. PubMed ID: 3580482
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chloride transport in a mathematical model of the rat proximal tubule.
    Weinstein AM
    Am J Physiol; 1992 Nov; 263(5 Pt 2):F784-98. PubMed ID: 1443169
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of glomerulotubular balance. I. Impact of dopamine on flow-dependent transport.
    Du Z; Yan Q; Wan L; Weinbaum S; Weinstein AM; Wang T
    Am J Physiol Renal Physiol; 2012 Aug; 303(3):F386-95. PubMed ID: 22552936
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A mathematical model of rat proximal tubule and loop of Henle.
    Weinstein AM
    Am J Physiol Renal Physiol; 2015 May; 308(10):F1076-97. PubMed ID: 25694479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling epithelial cell homeostasis: steady-state analysis.
    Weinstein AM
    Bull Math Biol; 1999 Nov; 61(6):1065-91. PubMed ID: 17879871
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ammonia transport in a mathematical model of rat proximal tubule.
    Weinstein AM
    Am J Physiol; 1994 Aug; 267(2 Pt 2):F237-48. PubMed ID: 8067384
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A mathematical model of rat distal convoluted tubule. I. Cotransporter function in early DCT.
    Weinstein AM
    Am J Physiol Renal Physiol; 2005 Oct; 289(4):F699-720. PubMed ID: 15855659
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonequilibrium thermodynamic model of the rat proximal tubule epithelium.
    Weinstein AM
    Biophys J; 1983 Nov; 44(2):153-70. PubMed ID: 6652211
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of glomerulotubular balance: flow-activated proximal tubule function.
    Wang T; Weinbaum S; Weinstein AM
    Pflugers Arch; 2017 Jun; 469(5-6):643-654. PubMed ID: 28271233
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluid transport and ion fluxes in mammalian kidney proximal tubule: a model analysis of isotonic transport.
    Larsen EH; Møbjerg N; Sørensen JN
    Acta Physiol (Oxf); 2006; 187(1-2):177-89. PubMed ID: 16734754
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A mathematical model of rat ascending Henle limb. II. Epithelial function.
    Weinstein AM; Krahn TA
    Am J Physiol Renal Physiol; 2010 Mar; 298(3):F525-42. PubMed ID: 19923414
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insights from mathematical modeling of renal tubular function.
    Weinstein AM
    Exp Nephrol; 1998; 6(5):462-8. PubMed ID: 9730663
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transport by epithelia with compliant lateral intercellular spaces: asymmetric oncotic effects across the rat proximal tubule.
    Weinstein AM
    Am J Physiol; 1984 Nov; 247(5 Pt 2):F848-62. PubMed ID: 6496750
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling epithelial cell homeostasis: assessing recovery and control mechanisms.
    Weinstein AM
    Bull Math Biol; 2004 Sep; 66(5):1201-40. PubMed ID: 15294423
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Basolateral membrane Cl/HCO3 exchange in the rat proximal convoluted tubule. Na-dependent and -independent modes.
    Alpern RJ; Chambers M
    J Gen Physiol; 1987 Apr; 89(4):581-98. PubMed ID: 2953859
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A kinetic model of rat proximal tubule transport--load-dependent bicarbonate reabsorption along the tubule.
    Thomas SR; Dagher G
    Bull Math Biol; 1994 May; 56(3):431-58. PubMed ID: 7522077
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A mathematical model of the inner medullary collecting duct of the rat: pathways for Na and K transport.
    Weinstein AM
    Am J Physiol; 1998 May; 274(5):F841-55. PubMed ID: 9612321
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.