These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 19280324)

  • 21. The oral absorption of phospholipid prodrugs: in vivo and in vitro mechanistic investigation of trafficking of a lecithin-valproic acid conjugate following oral administration.
    Dahan A; Duvdevani R; Shapiro I; Elmann A; Finkelstein E; Hoffman A
    J Control Release; 2008 Feb; 126(1):1-9. PubMed ID: 18082281
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Lymphatic Transport of Drugs after Intestinal Absorption: Impact of Drug Formulation and Physicochemical Properties.
    Ryšánek P; Grus T; Šíma M; Slanař O
    Pharm Res; 2020 Aug; 37(9):166. PubMed ID: 32770268
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Different impacts of intestinal lymphatic transport on the oral bioavailability of structurally similar synthetic lipophilic cannabinoids: dexanabinol and PRS-211,220.
    Gershkovich P; Qadri B; Yacovan A; Amselem S; Hoffman A
    Eur J Pharm Sci; 2007 Aug; 31(5):298-305. PubMed ID: 17560096
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synthesis of oxidative metabolites of CRA13 and their analogs: Identification of CRA13 active metabolites and analogs thereof with selective CB
    Hassan AHE; Cho MC; Kim HI; Yang JS; Park KT; Hwang JY; Jang CG; Park KD; Lee YS
    Bioorg Med Chem; 2018 Oct; 26(18):5069-5078. PubMed ID: 30217464
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Glyceride-Mimetic Prodrugs Incorporating Self-Immolative Spacers Promote Lymphatic Transport, Avoid First-Pass Metabolism, and Enhance Oral Bioavailability.
    Hu L; Quach T; Han S; Lim SF; Yadav P; Senyschyn D; Trevaskis NL; Simpson JS; Porter CJ
    Angew Chem Int Ed Engl; 2016 Oct; 55(44):13700-13705. PubMed ID: 27482655
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An examination of the effect of intestinal first pass extraction on intestinal lymphatic transport of saquinavir in the rat.
    Griffin BT; O'Driscoll CM
    Pharm Res; 2008 May; 25(5):1125-33. PubMed ID: 17975709
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The role of lymphatic transport on the systemic bioavailability of the Bcl-2 protein family inhibitors navitoclax (ABT-263) and ABT-199.
    Choo EF; Boggs J; Zhu C; Lubach JW; Catron ND; Jenkins G; Souers AJ; Voorman R
    Drug Metab Dispos; 2014 Feb; 42(2):207-12. PubMed ID: 24212376
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Association of halofantrine with postprandially derived plasma lipoproteins decreases its clearance relative to administration in the fasted state.
    Humberstone AJ; Porter CJ; Edwards GA; Charman WN
    J Pharm Sci; 1998 Aug; 87(8):936-42. PubMed ID: 9687337
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of lipid vehicle and P-glycoprotein inhibition on the mesenteric lymphatic transport of paclitaxel in unconscious, lymph duct-cannulated rats.
    Cai Q; Deng X; Li Z; An D; Shen T; Zhong M
    Drug Deliv; 2016; 23(1):147-53. PubMed ID: 24786483
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Does stereoselective lymphatic absorption contribute to the enantioselective pharmacokinetics of halofantrine In Vivo?
    Shackleford DM; Porter CJ; Charman WN
    Biopharm Drug Dispos; 2003 May; 24(4):153-7. PubMed ID: 12698498
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Triglyceride-mimetic prodrugs of scutellarin enhance oral bioavailability by promoting intestinal lymphatic transport and avoiding first-pass metabolism.
    Wang X; Zhang C; Han N; Luo J; Zhang S; Wang C; Jia Z; Du S
    Drug Deliv; 2021 Dec; 28(1):1664-1672. PubMed ID: 34338567
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Intestinal lymphatic absorption of cyclosporin A following oral administration in an olive oil solution in rats.
    Ueda CT; Lemaire M; Gsell G; Nussbaumer K
    Biopharm Drug Dispos; 1983; 4(2):113-24. PubMed ID: 6882880
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A physicochemical basis for the extensive intestinal lymphatic transport of a poorly lipid soluble antimalarial, halofantrine hydrochloride, after postprandial administration to dogs.
    Khoo SM; Prankerd RJ; Edwards GA; Porter CJ; Charman WN
    J Pharm Sci; 2002 Mar; 91(3):647-59. PubMed ID: 11920750
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Lymphatic absorption, metabolism, and excretion of a therapeutic peptide in dogs and rats.
    Zou Y; Bateman TJ; Adreani C; Shen X; Cunningham PK; Wang B; Trinh T; Christine A; Hong X; Nunes CN; Johnson CV; Zhang AS; Staskiewicz SJ; Braun M; Kumar S; Reddy VB
    Drug Metab Dispos; 2013 Dec; 41(12):2206-14. PubMed ID: 24088325
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Lymphatic transport of puerarin occurs after oral administration of different lipid-based formulations to unconscious lymph duct-cannulated rats.
    Zhou A; Lu T; Wang L; Lu C; Wang L; Wan M; Wu H
    Pharm Dev Technol; 2014 Sep; 19(6):743-7. PubMed ID: 23978005
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lipid-based delivery systems for improving the bioavailability and lymphatic transport of a poorly water-soluble LTB4 inhibitor.
    Hauss DJ; Fogal SE; Ficorilli JV; Price CA; Roy T; Jayaraj AA; Keirns JJ
    J Pharm Sci; 1998 Feb; 87(2):164-9. PubMed ID: 9519148
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A mouse model to evaluate the impact of species, sex, and lipid load on lymphatic drug transport.
    Trevaskis NL; Caliph SM; Nguyen G; Tso P; Charman WN; Porter CJ
    Pharm Res; 2013 Dec; 30(12):3254-70. PubMed ID: 23430484
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Lipid-based delivery systems and intestinal lymphatic drug transport: a mechanistic update.
    Trevaskis NL; Charman WN; Porter CJ
    Adv Drug Deliv Rev; 2008 Mar; 60(6):702-16. PubMed ID: 18155316
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cinnarizine food-effects in beagle dogs can be avoided by administration in a Self Nano Emulsifying Drug Delivery System (SNEDDS).
    Christiansen ML; Holm R; Kristensen J; Kreilgaard M; Jacobsen J; Abrahamsson B; Müllertz A
    Eur J Pharm Sci; 2014 Jun; 57():164-72. PubMed ID: 24239996
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of mono- and diglycerides on the digestion and absorption of lutein in lymph fistula rats.
    Tso P; Vurma M; Ko CW; Lee D; DeMichele S
    Am J Physiol Gastrointest Liver Physiol; 2018 Jul; 315(1):G95-G103. PubMed ID: 29470144
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.