These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 19280326)

  • 21. Classification of amino acids based on statistical results of known structures and cooperativity of protein folding.
    Chen H; Zhou X; Ou-Yang ZC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jun; 65(6 Pt 1):061907. PubMed ID: 12188759
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Prediction of secondary structural content of proteins from their amino acid composition alone. I. New analytic vector decomposition methods.
    Eisenhaber F; Imperiale F; Argos P; Frömmel C
    Proteins; 1996 Jun; 25(2):157-68. PubMed ID: 8811732
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Batch mode generation of residue-based diagrams of proteins.
    Campagne F; Bettler E; Vriend G; Weinstein H
    Bioinformatics; 2003 Sep; 19(14):1854-5. PubMed ID: 14512361
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Exceptional pairs of amino acid neighbors in alpha-helices.
    Goliaei B; Minuchehr Z
    FEBS Lett; 2003 Feb; 537(1-3):121-7. PubMed ID: 12606043
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nearest-neighbor effects on backbone alpha and beta carbon chemical shifts in proteins.
    Wang L; Eghbalnia HR; Markley JL
    J Biomol NMR; 2007 Nov; 39(3):247-57. PubMed ID: 17899393
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Conformations of amino acids in proteins.
    Hovmöller S; Zhou T; Ohlson T
    Acta Crystallogr D Biol Crystallogr; 2002 May; 58(Pt 5):768-76. PubMed ID: 11976487
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Discovering structural correlations in alpha-helices.
    Klingler TM; Brutlag DL
    Protein Sci; 1994 Oct; 3(10):1847-57. PubMed ID: 7849600
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Amino acid propensities are position-dependent throughout the length of alpha-helices.
    Engel DE; DeGrado WF
    J Mol Biol; 2004 Apr; 337(5):1195-205. PubMed ID: 15046987
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Beta-sheet preferences from first principles.
    Rossmeisl J; Kristensen I; Gregersen M; Jacobsen KW; Nørskov JK
    J Am Chem Soc; 2003 Dec; 125(52):16383-6. PubMed ID: 14692780
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Packing of secondary structural elements in proteins. Analysis and prediction of inter-helix distances.
    Reddy BV; Blundell TL
    J Mol Biol; 1993 Oct; 233(3):464-79. PubMed ID: 8411156
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An integrated approach to the analysis and modeling of protein sequences and structures. III. A comparative study of sequence conservation in protein structural families using multiple structural alignments.
    Yang AS; Honig B
    J Mol Biol; 2000 Aug; 301(3):691-711. PubMed ID: 10966778
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Folding type specific secondary structure propensities of synonymous codons.
    Gu W; Zhou T; Ma J; Sun X; Lu Z
    IEEE Trans Nanobioscience; 2003 Sep; 2(3):150-7. PubMed ID: 15376949
    [TBL] [Abstract][Full Text] [Related]  

  • 33. How the folding rates of two- and multistate proteins depend on the amino acid properties.
    Huang JT; Huang W; Huang SR; Li X
    Proteins; 2014 Oct; 82(10):2375-82. PubMed ID: 24810705
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Protein secondary structure: entropy, correlations and prediction.
    Crooks GE; Brenner SE
    Bioinformatics; 2004 Jul; 20(10):1603-11. PubMed ID: 14988117
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The intrinsic conformational propensities of the 20 naturally occurring amino acids and reflection of these propensities in proteins.
    Beck DA; Alonso DO; Inoyama D; Daggett V
    Proc Natl Acad Sci U S A; 2008 Aug; 105(34):12259-64. PubMed ID: 18713857
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Minimalist representations and the importance of nearest neighbor effects in protein folding simulations.
    Colubri A; Jha AK; Shen MY; Sali A; Berry RS; Sosnick TR; Freed KF
    J Mol Biol; 2006 Nov; 363(4):835-57. PubMed ID: 16982067
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Predicting the secondary structure of proteins using machine learning algorithms.
    Camacho R; Ferreira R; Rosa N; Guimarães V; Fonseca NA; Costa VS; de Sousa M; Magalhães A
    Int J Data Min Bioinform; 2012; 6(6):571-84. PubMed ID: 23356008
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Atypical structural tendencies among low-complexity domains in the Protein Data Bank proteome.
    Cascarina SM; Elder MR; Ross ED
    PLoS Comput Biol; 2020 Jan; 16(1):e1007487. PubMed ID: 31986130
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Prediction of protein folding class using global description of amino acid sequence.
    Dubchak I; Muchnik I; Holbrook SR; Kim SH
    Proc Natl Acad Sci U S A; 1995 Sep; 92(19):8700-4. PubMed ID: 7568000
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Amino acid pairing at the N- and C-termini of helical segments in proteins.
    Fonseca NA; Camacho R; Magalhães AL
    Proteins; 2008 Jan; 70(1):188-96. PubMed ID: 17654550
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.