BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

559 related articles for article (PubMed ID: 19280606)

  • 1. Beyond early development: Xenopus as an emerging model for the study of regenerative mechanisms.
    Beck CW; Izpisúa Belmonte JC; Christen B
    Dev Dyn; 2009 Jun; 238(6):1226-48. PubMed ID: 19280606
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neural retinal regeneration in the anuran amphibian Xenopus laevis post-metamorphosis: transdifferentiation of retinal pigmented epithelium regenerates the neural retina.
    Yoshii C; Ueda Y; Okamoto M; Araki M
    Dev Biol; 2007 Mar; 303(1):45-56. PubMed ID: 17184765
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cornea-lens transdifferentiation in the anuran, Xenopus tropicalis.
    Henry JJ; Elkins MB
    Dev Genes Evol; 2001 Sep; 211(8-9):377-87. PubMed ID: 11685571
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence that regenerative ability is an intrinsic property of limb cells in Xenopus.
    Sessions SK; Bryant SV
    J Exp Zool; 1988 Jul; 247(1):39-44. PubMed ID: 3183582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Xenopus laevis gelatinase B (Xmmp-9): development, regeneration, and wound healing.
    Carinato ME; Walter BE; Henry JJ
    Dev Dyn; 2000 Apr; 217(4):377-87. PubMed ID: 10767082
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transgenic Xenopus with prx1 limb enhancer reveals crucial contribution of MEK/ERK and PI3K/AKT pathways in blastema formation during limb regeneration.
    Suzuki M; Satoh A; Ide H; Tamura K
    Dev Biol; 2007 Apr; 304(2):675-86. PubMed ID: 17303106
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of activation of hedgehog signaling on patterning, growth, and differentiation in Xenopus froglet limb regeneration.
    Yakushiji N; Suzuki M; Satoh A; Ide H; Tamura K
    Dev Dyn; 2009 Aug; 238(8):1887-96. PubMed ID: 19544583
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nerve-dependent and -independent events in blastema formation during Xenopus froglet limb regeneration.
    Suzuki M; Satoh A; Ide H; Tamura K
    Dev Biol; 2005 Oct; 286(1):361-75. PubMed ID: 16154125
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cell lineage tracing during Xenopus tail regeneration.
    Gargioli C; Slack JM
    Development; 2004 Jun; 131(11):2669-79. PubMed ID: 15148301
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellular and molecular mechanisms of regeneration in Xenopus.
    Slack JM; Beck CW; Gargioli C; Christen B
    Philos Trans R Soc Lond B Biol Sci; 2004 May; 359(1445):745-51. PubMed ID: 15293801
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteomics analysis of regenerating amphibian limbs: changes during the onset of regeneration.
    King MW; Neff AW; Mescher AL
    Int J Dev Biol; 2009; 53(7):955-69. PubMed ID: 19598114
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lens regeneration in larval Xenopus laevis: experimental analysis of the decline in the regenerative capacity during development.
    Filoni S; Bernardini S; Cannata SM; D'Alessio A
    Dev Biol; 1997 Jul; 187(1):13-24. PubMed ID: 9224670
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of Xenopus digits and regenerated limbs of the froglet.
    Satoh A; Endo T; Abe M; Yakushiji N; Ohgo S; Tamura K; Ide H
    Dev Dyn; 2006 Dec; 235(12):3316-26. PubMed ID: 17075873
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Histone deacetylases are required for amphibian tail and limb regeneration but not development.
    Taylor AJ; Beck CW
    Mech Dev; 2012; 129(9-12):208-18. PubMed ID: 22947425
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Macroarray-based analysis of tail regeneration in Xenopus laevis larvae.
    Tazaki A; Kitayama A; Terasaka C; Watanabe K; Ueno N; Mochii M
    Dev Dyn; 2005 Aug; 233(4):1394-404. PubMed ID: 15977180
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cells of cutaneous immunity in Xenopus: studies during larval development and limb regeneration.
    Mescher AL; Wolf WL; Moseman EA; Hartman B; Harrison C; Nguyen E; Neff AW
    Dev Comp Immunol; 2007; 31(4):383-93. PubMed ID: 16926047
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterizing gene expression during lens formation in Xenopus laevis: evaluating the model for embryonic lens induction.
    Henry JJ; Carinato ME; Schaefer JJ; Wolfe AD; Walter BE; Perry KJ; Elbl TN
    Dev Dyn; 2002 Jun; 224(2):168-85. PubMed ID: 12112470
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Limb regeneration in Xenopus laevis froglet.
    Suzuki M; Yakushiji N; Nakada Y; Satoh A; Ide H; Tamura K
    ScientificWorldJournal; 2006 May; 6 Suppl 1():26-37. PubMed ID: 17205185
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regeneration of the amphibian retina: role of tissue interaction and related signaling molecules on RPE transdifferentiation.
    Araki M
    Dev Growth Differ; 2007 Feb; 49(2):109-20. PubMed ID: 17335432
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Requirement for betaB1-crystallin promoter of Xenopus laevis in embryonic lens development and lens regeneration.
    Mizuno N; Ueda Y; Kondoh H
    Dev Growth Differ; 2005 Apr; 47(3):131-40. PubMed ID: 15839998
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.