BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 19281222)

  • 21. Kinase inhibitors: not just for kinases anymore.
    McGovern SL; Shoichet BK
    J Med Chem; 2003 Apr; 46(8):1478-83. PubMed ID: 12672248
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Phenotypic detection of AmpC β-lactamases, extended-spectrum β-lactamases and metallo-β-lactamases in Enterobacteriaceae using a resazurin microtitre assay with inhibitor-based methods.
    Teethaisong Y; Eumkeb G; Chumnarnsilpa S; Autarkool N; Hobson J; Nakouti I; Hobbs G; Evans K
    J Med Microbiol; 2016 Oct; 65(10):1079-1087. PubMed ID: 27481506
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Exploring the inhibition of CTX-M-9 by beta-lactamase inhibitors and carbapenems.
    Bethel CR; Taracila M; Shyr T; Thomson JM; Distler AM; Hujer KM; Hujer AM; Endimiani A; Papp-Wallace K; Bonnet R; Bonomo RA
    Antimicrob Agents Chemother; 2011 Jul; 55(7):3465-75. PubMed ID: 21555770
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Validation of the AmpC β-lactamase binding site and identification of inhibitors with novel scaffolds.
    Chan FY; Neves MA; Sun N; Tsang MW; Leung YC; Chan TH; Abagyan R; Wong KY
    J Chem Inf Model; 2012 May; 52(5):1367-75. PubMed ID: 22559726
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Exploring sequence requirements for C₃/C₄ carboxylate recognition in the Pseudomonas aeruginosa cephalosporinase: Insights into plasticity of the AmpC β-lactamase.
    Drawz SM; Taracila M; Caselli E; Prati F; Bonomo RA
    Protein Sci; 2011 Jun; 20(6):941-58. PubMed ID: 21404358
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Inactivation of CMY-2 beta-lactamase by tazobactam: initial mass spectroscopic characterization.
    Bonomo RA; Liu J; Chen Y; Ng L; Hujer AM; Anderson VE
    Biochim Biophys Acta; 2001 Jun; 1547(2):196-205. PubMed ID: 11410275
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structure-based approach for binding site identification on AmpC beta-lactamase.
    Powers RA; Shoichet BK
    J Med Chem; 2002 Jul; 45(15):3222-34. PubMed ID: 12109906
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural study of phenyl boronic acid derivatives as AmpC beta-lactamase inhibitors.
    Tondi D; Calò S; Shoichet BK; Costi MP
    Bioorg Med Chem Lett; 2010 Jun; 20(11):3416-9. PubMed ID: 20452208
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Substrate selectivity and a novel role in inhibitor discrimination by residue 237 in the KPC-2 beta-lactamase.
    Papp-Wallace KM; Taracila M; Hornick JM; Hujer AM; Hujer KM; Distler AM; Endimiani A; Bonomo RA
    Antimicrob Agents Chemother; 2010 Jul; 54(7):2867-77. PubMed ID: 20421396
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Thiols as classical and slow-binding inhibitors of IMP-1 and other binuclear metallo-beta-lactamases.
    Siemann S; Clarke AJ; Viswanatha T; Dmitrienko GI
    Biochemistry; 2003 Feb; 42(6):1673-83. PubMed ID: 12578382
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Computational redesign of the SHV-1 beta-lactamase/beta-lactamase inhibitor protein interface.
    Reynolds KA; Hanes MS; Thomson JM; Antczak AJ; Berger JM; Bonomo RA; Kirsch JF; Handel TM
    J Mol Biol; 2008 Oct; 382(5):1265-75. PubMed ID: 18775544
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Stability and equilibria of promiscuous aggregates in high protein milieus.
    Coan KE; Shoichet BK
    Mol Biosyst; 2007 Mar; 3(3):208-13. PubMed ID: 17308667
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Inhibition of TEM-2 beta-lactamase from Escherichia coli by clavulanic acid: observation of intermediates by electrospray ionization mass spectrometry.
    Brown RP; Aplin RT; Schofield CJ
    Biochemistry; 1996 Sep; 35(38):12421-32. PubMed ID: 8823177
    [TBL] [Abstract][Full Text] [Related]  

  • 34. How Do Small Molecule Aggregates Inhibit Enzyme Activity? A Molecular Dynamics Study.
    Ghattas MA; Al Rawashdeh S; Atatreh N; Bryce RA
    J Chem Inf Model; 2020 Aug; 60(8):3901-3909. PubMed ID: 32628846
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structural insight into potent broad-spectrum inhibition with reversible recyclization mechanism: avibactam in complex with CTX-M-15 and Pseudomonas aeruginosa AmpC β-lactamases.
    Lahiri SD; Mangani S; Durand-Reville T; Benvenuti M; De Luca F; Sanyal G; Docquier JD
    Antimicrob Agents Chemother; 2013 Jun; 57(6):2496-505. PubMed ID: 23439634
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification and prediction of promiscuous aggregating inhibitors among known drugs.
    Seidler J; McGovern SL; Doman TN; Shoichet BK
    J Med Chem; 2003 Oct; 46(21):4477-86. PubMed ID: 14521410
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structures of ceftazidime and its transition-state analogue in complex with AmpC beta-lactamase: implications for resistance mutations and inhibitor design.
    Powers RA; Caselli E; Focia PJ; Prati F; Shoichet BK
    Biochemistry; 2001 Aug; 40(31):9207-14. PubMed ID: 11478888
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Beta-secondary and solvent deuterium kinetic isotope effects on beta-lactamase catalysis.
    Adediran SA; Deraniyagala SA; Xu Y; Pratt RF
    Biochemistry; 1996 Mar; 35(11):3604-13. PubMed ID: 8639512
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Binding properties of a peptide derived from beta-lactamase inhibitory protein.
    Rudgers GW; Huang W; Palzkill T
    Antimicrob Agents Chemother; 2001 Dec; 45(12):3279-86. PubMed ID: 11709298
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Competitive inhibitors of the CphA metallo-beta-lactamase from Aeromonas hydrophila.
    Horsfall LE; Garau G; Liénard BM; Dideberg O; Schofield CJ; Frère JM; Galleni M
    Antimicrob Agents Chemother; 2007 Jun; 51(6):2136-42. PubMed ID: 17307979
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.