These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 19281233)
1. Phase transformation of biphasic Cu2S-CuInS2 to monophasic CuInS2 nanorods. Connor ST; Hsu CM; Weil BD; Aloni S; Cui Y J Am Chem Soc; 2009 Apr; 131(13):4962-6. PubMed ID: 19281233 [TBL] [Abstract][Full Text] [Related]
2. Wurtzite CuInS₂ and CuInxGa₁-xS₂ nanoribbons: synthesis, optical and photoelectrical properties. Li Q; Zhai L; Zou C; Huang X; Zhang L; Yang Y; Chen X; Huang S Nanoscale; 2013 Feb; 5(4):1638-48. PubMed ID: 23334175 [TBL] [Abstract][Full Text] [Related]
3. Solventless synthesis of monodisperse Cu2S nanorods, nanodisks, and nanoplatelets. Sigman MB; Ghezelbash A; Hanrath T; Saunders AE; Lee F; Korgel BA J Am Chem Soc; 2003 Dec; 125(51):16050-7. PubMed ID: 14677997 [TBL] [Abstract][Full Text] [Related]
4. Phase control and its mechanism of CuInS2 nanoparticles. Kuzuya T; Hamanaka Y; Itoh K; Kino T; Sumiyama K; Fukunaka Y; Hirai S J Colloid Interface Sci; 2012 Dec; 388(1):137-43. PubMed ID: 22944477 [TBL] [Abstract][Full Text] [Related]
5. Synthesis and shape control of CuInS(2) nanoparticles. Kruszynska M; Borchert H; Parisi J; Kolny-Olesiak J J Am Chem Soc; 2010 Nov; 132(45):15976-86. PubMed ID: 20958030 [TBL] [Abstract][Full Text] [Related]
6. Selective facet reactivity during cation exchange in cadmium sulfide nanorods. Sadtler B; Demchenko DO; Zheng H; Hughes SM; Merkle MG; Dahmen U; Wang LW; Alivisatos AP J Am Chem Soc; 2009 Apr; 131(14):5285-93. PubMed ID: 19351206 [TBL] [Abstract][Full Text] [Related]
7. Shape- and phase-controlled synthesis of monodisperse, single-crystalline ternary chalcogenide colloids through a convenient solution synthesis strategy. Du W; Qian X; Yin J; Gong Q Chemistry; 2007; 13(31):8840-6. PubMed ID: 17654756 [TBL] [Abstract][Full Text] [Related]
8. Synthesis and shape-tailoring of copper sulfide/indium sulfide-based nanocrystals. Han W; Yi L; Zhao N; Tang A; Gao M; Tang Z J Am Chem Soc; 2008 Oct; 130(39):13152-61. PubMed ID: 18774814 [TBL] [Abstract][Full Text] [Related]
9. Large-scale synthesis and phase transformation of CuSe, CuInSe2, and CuInSe2/CuInS2 core/shell nanowire bundles. Xu J; Lee CS; Tang YB; Chen X; Chen ZH; Zhang WJ; Lee ST; Zhang W; Yang Z ACS Nano; 2010 Apr; 4(4):1845-50. PubMed ID: 20210350 [TBL] [Abstract][Full Text] [Related]
10. The structure-controlling solventless synthesis and optical properties of uniform Cu(2)S nanodisks. Chen YB; Chen L; Wu LM Chemistry; 2008; 14(35):11069-75. PubMed ID: 19003830 [TBL] [Abstract][Full Text] [Related]
11. Fabrication of CuInS2 films from electrodeposited Cu/In bilayers: effects of preheat treatment on their structural, photoelectrochemical and solar cell properties. Lee SM; Ikeda S; Yagi T; Harada T; Ennaoui A; Matsumura M Phys Chem Chem Phys; 2011 Apr; 13(14):6662-9. PubMed ID: 21384000 [TBL] [Abstract][Full Text] [Related]
12. Controlling electron beam-induced structure modifications and cation exchange in cadmium sulfide-copper sulfide heterostructured nanorods. Zheng H; Sadtler B; Habenicht C; Freitag B; Alivisatos AP; Kisielowski C Ultramicroscopy; 2013 Nov; 134():207-13. PubMed ID: 23830376 [TBL] [Abstract][Full Text] [Related]
13. One-pot synthesis of CuInS2 nanocrystals using different anions to engineer their morphology and crystal phase. Tang A; Hu Z; Yin Z; Ye H; Yang C; Teng F Dalton Trans; 2015 May; 44(19):9251-9. PubMed ID: 25910188 [TBL] [Abstract][Full Text] [Related]
14. One-pot synthesis of Cu1.94S-CdS and Cu1.94S-Zn(x)Cd(1-x)S nanodisk heterostructures. Regulacio MD; Ye C; Lim SH; Bosman M; Polavarapu L; Koh WL; Zhang J; Xu QH; Han MY J Am Chem Soc; 2011 Feb; 133(7):2052-5. PubMed ID: 21280573 [TBL] [Abstract][Full Text] [Related]
15. Efficient "green" quantum dot-sensitized solar cells based on Cu2S-CuInS2-ZnSe architecture. Chang JY; Su LF; Li CH; Chang CC; Lin JM Chem Commun (Camb); 2012 May; 48(40):4848-50. PubMed ID: 22498756 [TBL] [Abstract][Full Text] [Related]
16. Size effects in the oriented-attachment growth process: the case of Cu nanoseeds. Shen S; Zhuang J; Xu X; Nisar A; Hu S; Wang X Inorg Chem; 2009 Jun; 48(12):5117-28. PubMed ID: 19413306 [TBL] [Abstract][Full Text] [Related]
17. Growth evolution and phase transition from chalcocite to digenite in nanocrystalline copper sulfide: Morphological, optical and electrical properties. Quintana-Ramirez PV; Arenas-Arrocena MC; Santos-Cruz J; Vega-González M; Martínez-Alvarez O; Castaño-Meneses VM; Acosta-Torres LS; de la Fuente-Hernández J Beilstein J Nanotechnol; 2014; 5():1542-52. PubMed ID: 25247136 [TBL] [Abstract][Full Text] [Related]
18. Kinetically controlled synthesis of wurtzite ZnS nanorods through mild thermolysis of a covalent organic-inorganic network. Chen X; Xu H; Xu N; Zhao F; Lin W; Lin G; Fu Y; Huang Z; Wang H; Wu M Inorg Chem; 2003 May; 42(9):3100-6. PubMed ID: 12716207 [TBL] [Abstract][Full Text] [Related]
19. Near-Infrared Emitting CuInSe₂/CuInS₂ Dot Core/Rod Shell Heteronanorods by Sequential Cation Exchange. van der Stam W; Bladt E; Rabouw FT; Bals S; Donega Cde M ACS Nano; 2015 Nov; 9(11):11430-8. PubMed ID: 26449673 [TBL] [Abstract][Full Text] [Related]
20. The phase transformation of CuInS2 from chalcopyrite to wurtzite. Xie BB; Hu BB; Jiang LF; Li G; Du ZL Nanoscale Res Lett; 2015; 10():86. PubMed ID: 25852382 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]