BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 19281233)

  • 1. Phase transformation of biphasic Cu2S-CuInS2 to monophasic CuInS2 nanorods.
    Connor ST; Hsu CM; Weil BD; Aloni S; Cui Y
    J Am Chem Soc; 2009 Apr; 131(13):4962-6. PubMed ID: 19281233
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wurtzite CuInS₂ and CuInxGa₁-xS₂ nanoribbons: synthesis, optical and photoelectrical properties.
    Li Q; Zhai L; Zou C; Huang X; Zhang L; Yang Y; Chen X; Huang S
    Nanoscale; 2013 Feb; 5(4):1638-48. PubMed ID: 23334175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solventless synthesis of monodisperse Cu2S nanorods, nanodisks, and nanoplatelets.
    Sigman MB; Ghezelbash A; Hanrath T; Saunders AE; Lee F; Korgel BA
    J Am Chem Soc; 2003 Dec; 125(51):16050-7. PubMed ID: 14677997
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phase control and its mechanism of CuInS2 nanoparticles.
    Kuzuya T; Hamanaka Y; Itoh K; Kino T; Sumiyama K; Fukunaka Y; Hirai S
    J Colloid Interface Sci; 2012 Dec; 388(1):137-43. PubMed ID: 22944477
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and shape control of CuInS(2) nanoparticles.
    Kruszynska M; Borchert H; Parisi J; Kolny-Olesiak J
    J Am Chem Soc; 2010 Nov; 132(45):15976-86. PubMed ID: 20958030
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective facet reactivity during cation exchange in cadmium sulfide nanorods.
    Sadtler B; Demchenko DO; Zheng H; Hughes SM; Merkle MG; Dahmen U; Wang LW; Alivisatos AP
    J Am Chem Soc; 2009 Apr; 131(14):5285-93. PubMed ID: 19351206
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shape- and phase-controlled synthesis of monodisperse, single-crystalline ternary chalcogenide colloids through a convenient solution synthesis strategy.
    Du W; Qian X; Yin J; Gong Q
    Chemistry; 2007; 13(31):8840-6. PubMed ID: 17654756
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and shape-tailoring of copper sulfide/indium sulfide-based nanocrystals.
    Han W; Yi L; Zhao N; Tang A; Gao M; Tang Z
    J Am Chem Soc; 2008 Oct; 130(39):13152-61. PubMed ID: 18774814
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Large-scale synthesis and phase transformation of CuSe, CuInSe2, and CuInSe2/CuInS2 core/shell nanowire bundles.
    Xu J; Lee CS; Tang YB; Chen X; Chen ZH; Zhang WJ; Lee ST; Zhang W; Yang Z
    ACS Nano; 2010 Apr; 4(4):1845-50. PubMed ID: 20210350
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The structure-controlling solventless synthesis and optical properties of uniform Cu(2)S nanodisks.
    Chen YB; Chen L; Wu LM
    Chemistry; 2008; 14(35):11069-75. PubMed ID: 19003830
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of CuInS2 films from electrodeposited Cu/In bilayers: effects of preheat treatment on their structural, photoelectrochemical and solar cell properties.
    Lee SM; Ikeda S; Yagi T; Harada T; Ennaoui A; Matsumura M
    Phys Chem Chem Phys; 2011 Apr; 13(14):6662-9. PubMed ID: 21384000
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlling electron beam-induced structure modifications and cation exchange in cadmium sulfide-copper sulfide heterostructured nanorods.
    Zheng H; Sadtler B; Habenicht C; Freitag B; Alivisatos AP; Kisielowski C
    Ultramicroscopy; 2013 Nov; 134():207-13. PubMed ID: 23830376
    [TBL] [Abstract][Full Text] [Related]  

  • 13. One-pot synthesis of CuInS2 nanocrystals using different anions to engineer their morphology and crystal phase.
    Tang A; Hu Z; Yin Z; Ye H; Yang C; Teng F
    Dalton Trans; 2015 May; 44(19):9251-9. PubMed ID: 25910188
    [TBL] [Abstract][Full Text] [Related]  

  • 14. One-pot synthesis of Cu1.94S-CdS and Cu1.94S-Zn(x)Cd(1-x)S nanodisk heterostructures.
    Regulacio MD; Ye C; Lim SH; Bosman M; Polavarapu L; Koh WL; Zhang J; Xu QH; Han MY
    J Am Chem Soc; 2011 Feb; 133(7):2052-5. PubMed ID: 21280573
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient "green" quantum dot-sensitized solar cells based on Cu2S-CuInS2-ZnSe architecture.
    Chang JY; Su LF; Li CH; Chang CC; Lin JM
    Chem Commun (Camb); 2012 May; 48(40):4848-50. PubMed ID: 22498756
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Size effects in the oriented-attachment growth process: the case of Cu nanoseeds.
    Shen S; Zhuang J; Xu X; Nisar A; Hu S; Wang X
    Inorg Chem; 2009 Jun; 48(12):5117-28. PubMed ID: 19413306
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Growth evolution and phase transition from chalcocite to digenite in nanocrystalline copper sulfide: Morphological, optical and electrical properties.
    Quintana-Ramirez PV; Arenas-Arrocena MC; Santos-Cruz J; Vega-González M; Martínez-Alvarez O; Castaño-Meneses VM; Acosta-Torres LS; de la Fuente-Hernández J
    Beilstein J Nanotechnol; 2014; 5():1542-52. PubMed ID: 25247136
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetically controlled synthesis of wurtzite ZnS nanorods through mild thermolysis of a covalent organic-inorganic network.
    Chen X; Xu H; Xu N; Zhao F; Lin W; Lin G; Fu Y; Huang Z; Wang H; Wu M
    Inorg Chem; 2003 May; 42(9):3100-6. PubMed ID: 12716207
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Near-Infrared Emitting CuInSe₂/CuInS₂ Dot Core/Rod Shell Heteronanorods by Sequential Cation Exchange.
    van der Stam W; Bladt E; Rabouw FT; Bals S; Donega Cde M
    ACS Nano; 2015 Nov; 9(11):11430-8. PubMed ID: 26449673
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The phase transformation of CuInS2 from chalcopyrite to wurtzite.
    Xie BB; Hu BB; Jiang LF; Li G; Du ZL
    Nanoscale Res Lett; 2015; 10():86. PubMed ID: 25852382
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.