These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 19281236)

  • 1. Oleylamine-mediated synthesis of Pd nanoparticles for catalytic formic acid oxidation.
    Mazumder V; Sun S
    J Am Chem Soc; 2009 Apr; 131(13):4588-9. PubMed ID: 19281236
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monodisperse nickel nanoparticles and their catalysis in hydrolytic dehydrogenation of ammonia borane.
    Metin O; Mazumder V; Ozkar S; Sun S
    J Am Chem Soc; 2010 Feb; 132(5):1468-9. PubMed ID: 20078051
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A facile one-pot synthesis and enhanced formic acid oxidation of monodisperse Pd-Cu nanocatalysts.
    Park KH; Lee YW; Kang SW; Han SW
    Chem Asian J; 2011 Jun; 6(6):1515-9. PubMed ID: 21509940
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of ultrathin FePtPd nanowires and their use as catalysts for methanol oxidation reaction.
    Guo S; Zhang S; Sun X; Sun S
    J Am Chem Soc; 2011 Oct; 133(39):15354-7. PubMed ID: 21894999
    [TBL] [Abstract][Full Text] [Related]  

  • 5. One-pot synthesis of monodisperse 5 nm Pd-Ni nanoalloys for electrocatalytic ethanol oxidation.
    Lee K; Kang SW; Lee SU; Park KH; Lee YW; Han SW
    ACS Appl Mater Interfaces; 2012 Aug; 4(8):4208-14. PubMed ID: 22799256
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrocatalytic activity of Pd-Co bimetallic mixtures for formic acid oxidation studied by scanning electrochemical microscopy.
    Jung C; Sánchez-Sánchez CM; Lin CL; Rodríguez-López J; Bard AJ
    Anal Chem; 2009 Aug; 81(16):7003-8. PubMed ID: 19627121
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction.
    Lim B; Jiang M; Camargo PH; Cho EC; Tao J; Lu X; Zhu Y; Xia Y
    Science; 2009 Jun; 324(5932):1302-5. PubMed ID: 19443738
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural design and facile synthesis of a highly efficient catalyst for formic acid electrooxidation.
    Wang XM; Wang ME; Zhou DD; Xia YY
    Phys Chem Chem Phys; 2011 Aug; 13(30):13594-7. PubMed ID: 21701741
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A facile synthesis of MPd (M = Co, Cu) nanoparticles and their catalysis for formic acid oxidation.
    Mazumder V; Chi M; Mankin MN; Liu Y; Metin Ö; Sun D; More KL; Sun S
    Nano Lett; 2012 Feb; 12(2):1102-6. PubMed ID: 22276672
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and oxygen reduction electrocatalytic property of Pt-on-Pd bimetallic heteronanostructures.
    Peng Z; Yang H
    J Am Chem Soc; 2009 Jun; 131(22):7542-3. PubMed ID: 19438286
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sulfonation of ordered mesoporous carbon supported Pd catalysts for formic acid electrooxidation.
    Sun ZP; Zhang XG; Tong H; Liang YY; Li HL
    J Colloid Interface Sci; 2009 Sep; 337(2):614-8. PubMed ID: 19555960
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Size effects in electronic and catalytic properties of unsupported palladium nanoparticles in electrooxidation of formic acid.
    Zhou WP; Lewera A; Larsen R; Masel RI; Bagus PS; Wieckowski A
    J Phys Chem B; 2006 Jul; 110(27):13393-8. PubMed ID: 16821860
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Keggin ion mediated synthesis of hydrophobized Pd nanoparticles for multifunctional catalysis.
    Mandal S; Das A; Srivastava R; Sastry M
    Langmuir; 2005 Mar; 21(6):2408-13. PubMed ID: 15752032
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Composition effects of FePt alloy nanoparticles on the electro-oxidation of formic acid.
    Chen W; Kim J; Sun S; Chen S
    Langmuir; 2007 Oct; 23(22):11303-10. PubMed ID: 17892313
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microemulsion-templated synthesis of carbon nanotube-supported pd and rh nanoparticles for catalytic applications.
    Yoon B; Wai CM
    J Am Chem Soc; 2005 Dec; 127(49):17174-5. PubMed ID: 16332051
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Core/shell Pd/FePt nanoparticles as an active and durable catalyst for the oxygen reduction reaction.
    Mazumder V; Chi M; More KL; Sun S
    J Am Chem Soc; 2010 Jun; 132(23):7848-9. PubMed ID: 20496893
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Size effect of Pt nanoparticle on catalytic activity in oxidation of methanol and formic acid: comparison to Pt(111), Pt(100), and polycrystalline Pt electrodes.
    Rhee CK; Kim BJ; Ham C; Kim YJ; Song K; Kwon K
    Langmuir; 2009 Jun; 25(12):7140-7. PubMed ID: 19397278
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microwave synthesis of supported Au and Pd nanoparticle catalysts for CO oxidation.
    Glaspell G; Fuoco L; El-Shall MS
    J Phys Chem B; 2005 Sep; 109(37):17350-5. PubMed ID: 16853217
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoporous PdNi Alloy Nanowires As Highly Active Catalysts for the Electro-Oxidation of Formic Acid.
    Du C; Chen M; Wang W; Yin G
    ACS Appl Mater Interfaces; 2011 Feb; 3(2):105-9. PubMed ID: 21192691
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation and characterization TiO(x)-Pt/C catalyst for hydrogen oxidation reaction.
    Elezović NR; Babić BM; Vracar LjM; Radmilović VR; Krstajić NV
    Phys Chem Chem Phys; 2009 Jul; 11(25):5192-7. PubMed ID: 19562154
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.