These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 19281236)

  • 21. One-pot synthesis of graphene-supported monodisperse Pd nanoparticles as catalyst for formic acid electro-oxidation.
    Yang S; Dong J; Yao Z; Shen C; Shi X; Tian Y; Lin S; Zhang X
    Sci Rep; 2014 Mar; 4():4501. PubMed ID: 24675779
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Monodisperse icosahedral Ag, Au, and Pd nanoparticles: size control strategy and superlattice formation.
    Zhang Q; Xie J; Yang J; Lee JY
    ACS Nano; 2009 Jan; 3(1):139-48. PubMed ID: 19206260
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synthesis of CuPt nanorod catalysts with tunable lengths.
    Liu Q; Yan Z; Henderson NL; Bauer JC; Goodman DW; Batteas JD; Schaak RE
    J Am Chem Soc; 2009 Apr; 131(16):5720-1. PubMed ID: 19348430
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Carbon monoxide and methanol oxidation at platinum catalysts supported on ordered mesoporous carbon: the influence of functionalization of the support.
    Salgado JR; Quintana JJ; Calvillo L; Lázaro MJ; Cabot PL; Esparbé I; Pastor E
    Phys Chem Chem Phys; 2008 Dec; 10(45):6796-806. PubMed ID: 19015783
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Localized Pd overgrowth on cubic Pt nanocrystals for enhanced electrocatalytic oxidation of formic acid.
    Lee H; Habas SE; Somorjai GA; Yang P
    J Am Chem Soc; 2008 Apr; 130(16):5406-7. PubMed ID: 18366165
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Influence of bi modification of pt anode catalyst in direct formic acid fuel cells.
    Kang S; Lee J; Lee JK; Chung SY; Tak Y
    J Phys Chem B; 2006 Apr; 110(14):7270-4. PubMed ID: 16599497
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Design and synthesis of Pd-MnO2 nanolamella-graphene composite as a high-performance multifunctional electrocatalyst towards formic acid and methanol oxidation.
    Huang H; Wang X
    Phys Chem Chem Phys; 2013 Jul; 15(25):10367-75. PubMed ID: 23681315
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synthesis of "clean" and well-dispersive Pd nanoparticles with excellent electrocatalytic property on graphene oxide.
    Chen X; Wu G; Chen J; Chen X; Xie Z; Wang X
    J Am Chem Soc; 2011 Mar; 133(11):3693-5. PubMed ID: 21348468
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High-efficiency palladium catalysts supported on ppy-modified C60 for formic acid oxidation.
    Bai Z; Yang L; Guo Y; Zheng Z; Hu C; Xu P
    Chem Commun (Camb); 2011 Feb; 47(6):1752-4. PubMed ID: 21125109
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Highly active Pt3Pb and core-shell Pt3Pb-Pt electrocatalysts for formic acid oxidation.
    Kang Y; Qi L; Li M; Diaz RE; Su D; Adzic RR; Stach E; Li J; Murray CB
    ACS Nano; 2012 Mar; 6(3):2818-25. PubMed ID: 22385261
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structural effects of electrochemical oxidation of formic acid on single crystal electrodes of palladium.
    Hoshi N; Kida K; Nakamura M; Nakada M; Osada K
    J Phys Chem B; 2006 Jun; 110(25):12480-4. PubMed ID: 16800575
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electrocatalytic performance of fuel oxidation by Pt3Ti nanoparticles.
    Abe H; Matsumoto F; Alden LR; Warren SC; Abruña HD; DiSalvo FJ
    J Am Chem Soc; 2008 Apr; 130(16):5452-8. PubMed ID: 18370390
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Precise seed-mediated growth and size-controlled synthesis of palladium nanoparticles using a green chemistry approach.
    Liu J; He F; Gunn TM; Zhao D; Roberts CB
    Langmuir; 2009 Jun; 25(12):7116-28. PubMed ID: 19309120
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Shape-dependent electrocatalysis: formic acid electrooxidation on cubic Pd nanoparticles.
    Vidal-Iglesias FJ; Arán-Ais RM; Solla-Gullón J; Garnier E; Herrero E; Aldaz A; Feliu JM
    Phys Chem Chem Phys; 2012 Aug; 14(29):10258-65. PubMed ID: 22722609
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Preparation and electrochemistry of Pd-Ni/Si nanowire nanocomposite catalytic anode for direct ethanol fuel cell.
    Miao F; Tao B; Chu PK
    Dalton Trans; 2012 Apr; 41(16):5055-9. PubMed ID: 22395815
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Highly selective synthesis of catalytically active monodisperse rhodium nanocubes.
    Zhang Y; Grass ME; Kuhn JN; Tao F; Habas SE; Huang W; Yang P; Somorjai GA
    J Am Chem Soc; 2008 May; 130(18):5868-9. PubMed ID: 18399628
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pd-Pt random alloy nanocubes with tunable compositions and their enhanced electrocatalytic activities.
    Yuan Q; Zhou Z; Zhuang J; Wang X
    Chem Commun (Camb); 2010 Mar; 46(9):1491-3. PubMed ID: 20162158
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reaction-driven restructuring of Rh-Pd and Pt-Pd core-shell nanoparticles.
    Tao F; Grass ME; Zhang Y; Butcher DR; Renzas JR; Liu Z; Chung JY; Mun BS; Salmeron M; Somorjai GA
    Science; 2008 Nov; 322(5903):932-4. PubMed ID: 18845713
    [TBL] [Abstract][Full Text] [Related]  

  • 39. New route for the preparation of Pd and PdAu nanoparticles using photoexcited Ti-containing zeolite as an efficient support material and investigation of their catalytic properties.
    Mori K; Miura Y; Shironita S; Yamashita H
    Langmuir; 2009 Sep; 25(18):11180-7. PubMed ID: 19603770
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Activating Pd by morphology tailoring for oxygen reduction.
    Xiao L; Zhuang L; Liu Y; Lu J; Abruña HD
    J Am Chem Soc; 2009 Jan; 131(2):602-8. PubMed ID: 19108685
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.