These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 19281478)
1. Increased proline loading to phloem and its effects on nitrogen uptake and assimilation in water-stressed white clover (Trifolium repens). Lee BR; Jin YL; Avice JC; Cliquet JB; Ourry A; Kim TH New Phytol; 2009; 182(3):654-663. PubMed ID: 19281478 [TBL] [Abstract][Full Text] [Related]
2. De novo protein synthesis in relation to ammonia and proline accumulation in water stressed white clover. Kim TH; Lee BR; Jung WJ; Kim KY; Avice JC; Ourry A Funct Plant Biol; 2004 Oct; 31(8):847-855. PubMed ID: 32688954 [TBL] [Abstract][Full Text] [Related]
3. Mycorrhizal colonisation and P-supplement effects on N uptake and N assimilation in perennial ryegrass under well-watered and drought-stressed conditions. Lee BR; Muneer S; Avice JC; Jung WJ; Kim TH Mycorrhiza; 2012 Oct; 22(7):525-34. PubMed ID: 22349921 [TBL] [Abstract][Full Text] [Related]
4. Water-deficit accumulates sugars by starch degradation--not by de novo synthesis--in white clover leaves (Trifolium repens). Lee BR; Jin YL; Jung WJ; Avice JC; Morvan-Bertrand A; Ourry A; Park CW; Kim TH Physiol Plant; 2008 Nov; 134(3):403-11. PubMed ID: 18785903 [TBL] [Abstract][Full Text] [Related]
5. Genotypic differences in nitrate uptake, translocation and assimilation of two Chinese cabbage cultivars [Brassica campestris L. ssp. Chinensis (L.)]. Tang Y; Sun X; Hu C; Tan Q; Zhao X Plant Physiol Biochem; 2013 Sep; 70():14-20. PubMed ID: 23770590 [TBL] [Abstract][Full Text] [Related]
6. How does sulphur availability modify N acquisition of white clover (Trifolium repens L.)? Varin S; Cliquet JB; Personeni E; Avice JC; Lemauviel-Lavenant S J Exp Bot; 2010; 61(1):225-34. PubMed ID: 19933318 [TBL] [Abstract][Full Text] [Related]
7. Ammonia production and assimilation: its importance as a tolerance mechanism during moderate water deficit in tomato plants. Sánchez-Rodríguez E; Rubio-Wilhelmi Mdel M; Ríos JJ; Blasco B; Rosales MÁ; Melgarejo R; Romero L; Ruiz JM J Plant Physiol; 2011 May; 168(8):816-23. PubMed ID: 21316797 [TBL] [Abstract][Full Text] [Related]
8. Ammonium uptake and metabolism alleviate PEG-induced water stress in rice seedlings. Cao X; Zhong C; Zhu C; Zhu L; Zhang J; Wu L; Jin Q Plant Physiol Biochem; 2018 Nov; 132():128-137. PubMed ID: 30189416 [TBL] [Abstract][Full Text] [Related]
9. Response pattern of amino compounds in phloem and xylem of trees to soil drought depends on drought intensity and root symbiosis. Liu XP; Gong CM; Fan YY; Eiblmeier M; Zhao Z; Han G; Rennenberg H Plant Biol (Stuttg); 2013 Jan; 15 Suppl 1():101-8. PubMed ID: 22845058 [TBL] [Abstract][Full Text] [Related]
10. Bottle gourd rootstock-grafting affects nitrogen metabolism in NaCl-stressed watermelon leaves and enhances short-term salt tolerance. Yang Y; Lu X; Yan B; Li B; Sun J; Guo S; Tezuka T J Plant Physiol; 2013 May; 170(7):653-61. PubMed ID: 23399406 [TBL] [Abstract][Full Text] [Related]
11. Longevity of white clover (Trifolium repens) leaves, stolons and roots, and consequences for nitrogen dynamics under northern temperate climatic conditions. Sturite I; Henriksen TM; Breland TA Ann Bot; 2007 Jul; 100(1):33-40. PubMed ID: 17495980 [TBL] [Abstract][Full Text] [Related]
12. Partitioning of nitrate assimilation among leaves, stems and roots of poplar. Black BL; Fuchigami LH; Coleman GD Tree Physiol; 2002 Jul; 22(10):717-24. PubMed ID: 12091153 [TBL] [Abstract][Full Text] [Related]
13. Interaction of sulfur and nitrogen nutrition in tobacco (Nicotiana tabacum) plants: significance of nitrogen source and root nitrate reductase. Kruse J; Kopriva S; Hänsch R; Krauss GJ; Mendel RR; Rennenberg H Plant Biol (Stuttg); 2007 Sep; 9(5):638-46. PubMed ID: 17853363 [TBL] [Abstract][Full Text] [Related]
15. Exogenous calcium affects nitrogen metabolism in root-zone hypoxia-stressed muskmelon roots and enhances short-term hypoxia tolerance. Gao H; Jia Y; Guo S; Lv G; Wang T; Juan L J Plant Physiol; 2011 Jul; 168(11):1217-25. PubMed ID: 21458885 [TBL] [Abstract][Full Text] [Related]
16. Nitrate reductase activity in leaves as a plant physiological indicator of in vivo biological nitrification inhibition by Brachiaria humidicola. Karwat H; Sparke MA; Rasche F; Arango J; Nuñez J; Rao I; Moreta D; Cadisch G Plant Physiol Biochem; 2019 Apr; 137():113-120. PubMed ID: 30772621 [TBL] [Abstract][Full Text] [Related]
17. Morphological pattern of development affects the contribution of nitrogen reserves to regrowth of defoliated white clover (Trifolium repens L.). Goulas E; Le Dily F; Simon JC; Ourry A J Exp Bot; 2002 Sep; 53(376):1941-8. PubMed ID: 12177134 [TBL] [Abstract][Full Text] [Related]
18. Whole-plant and organ-level nitrogen isotope discrimination indicates modification of partitioning of assimilation, fluxes and allocation of nitrogen in knockout lines of Arabidopsis thaliana. Kalcsits LA; Guy RD Physiol Plant; 2013 Oct; 149(2):249-59. PubMed ID: 23414092 [TBL] [Abstract][Full Text] [Related]
19. Time point- and plant part-specific changes in phloem exudate metabolites of leaves and ears of wheat in response to drought and effects on aphids. Stallmann J; Pons CAA; Schweiger R; Müller C PLoS One; 2022; 17(1):e0262671. PubMed ID: 35077467 [TBL] [Abstract][Full Text] [Related]
20. Transient increase of de novo amino acid synthesis and its physiological significance in water-stressed white clover. Lee BR; Jung WJ; Kim KY; Avice JC; Ourry A; Kim TH Funct Plant Biol; 2005 Sep; 32(9):831-838. PubMed ID: 32689180 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]