BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 19281766)

  • 1. Differentiation-dependent modification and subcellular distribution of aquaporin-0 suggests multiple functional roles in the rat lens.
    Grey AC; Li L; Jacobs MD; Schey KL; Donaldson PJ
    Differentiation; 2009 Jan; 77(1):70-83. PubMed ID: 19281766
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial distributions of AQP5 and AQP0 in embryonic and postnatal mouse lens development.
    Petrova RS; Schey KL; Donaldson PJ; Grey AC
    Exp Eye Res; 2015 Mar; 132():124-35. PubMed ID: 25595964
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of the interaction between aquaporin 0 (AQP0) and the filensin tail region on AQP0 water permeability.
    Nakazawa Y; Oka M; Furuki K; Mitsuishi A; Nakashima E; Takehana M
    Mol Vis; 2011; 17():3191-9. PubMed ID: 22194645
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The C terminus of lens aquaporin 0 interacts with the cytoskeletal proteins filensin and CP49.
    Lindsey Rose KM; Gourdie RG; Prescott AR; Quinlan RA; Crouch RK; Schey KL
    Invest Ophthalmol Vis Sci; 2006 Apr; 47(4):1562-70. PubMed ID: 16565393
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of a direct Aquaporin-0 binding site in the lens-specific cytoskeletal protein filensin.
    Wang Z; Schey KL
    Exp Eye Res; 2017 Jun; 159():23-29. PubMed ID: 28259670
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aquaporin-0 targets interlocking domains to control the integrity and transparency of the eye lens.
    Lo WK; Biswas SK; Brako L; Shiels A; Gu S; Jiang JX
    Invest Ophthalmol Vis Sci; 2014 Mar; 55(3):1202-12. PubMed ID: 24458158
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Post-translational modifications of aquaporin 0 (AQP0) in the normal human lens: spatial and temporal occurrence.
    Ball LE; Garland DL; Crouch RK; Schey KL
    Biochemistry; 2004 Aug; 43(30):9856-65. PubMed ID: 15274640
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MALDI Imaging Mass Spectrometry Spatially Maps Age-Related Deamidation and Truncation of Human Lens Aquaporin-0.
    Wenke JL; Rose KL; Spraggins JM; Schey KL
    Invest Ophthalmol Vis Sci; 2015 Nov; 56(12):7398-405. PubMed ID: 26574799
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aquaporin 0 plays a pivotal role in refractive index gradient development in mammalian eye lens to prevent spherical aberration.
    Kumari SS; Varadaraj K
    Biochem Biophys Res Commun; 2014 Oct; 452(4):986-91. PubMed ID: 25229686
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aquaporin-0 interacts with the FERM domain of ezrin/radixin/moesin proteins in the ocular lens.
    Wang Z; Schey KL
    Invest Ophthalmol Vis Sci; 2011 Jul; 52(8):5079-87. PubMed ID: 21642618
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A predominant form of C-terminally end-cleaved AQP0 functions as an open water channel and an adhesion protein in AQP0
    Kumari SS; Varadaraj K
    Biochem Biophys Res Commun; 2019 Apr; 511(3):626-630. PubMed ID: 30826060
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PKC putative phosphorylation site Ser235 is required for MIP/AQP0 translocation to the plasma membrane.
    Golestaneh N; Fan J; Zelenka P; Chepelinsky AB
    Mol Vis; 2008 May; 14():1006-14. PubMed ID: 18523655
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deletion of beaded filament proteins or the C-terminal end of Aquaporin 0 causes analogous abnormal distortion aberrations in mouse lens.
    Varadaraj K; FitzGerald PG; Kumari SS
    Exp Eye Res; 2021 Aug; 209():108645. PubMed ID: 34087204
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein aging: truncation of aquaporin 0 in human lens regions is a continuous age-dependent process.
    Korlimbinis A; Berry Y; Thibault D; Schey KL; Truscott RJ
    Exp Eye Res; 2009 May; 88(5):966-73. PubMed ID: 19135052
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular mechanism of Aquaporin 0-induced fiber cell to fiber cell adhesion in the eye lens.
    Varadaraj K; Kumari SS
    Biochem Biophys Res Commun; 2018 Nov; 506(1):284-289. PubMed ID: 30348525
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction of major intrinsic protein (aquaporin-0) with fiber connexins in lens development.
    Yu XS; Jiang JX
    J Cell Sci; 2004 Feb; 117(Pt 6):871-80. PubMed ID: 14762116
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intact and N- or C-terminal end truncated AQP0 function as open water channels and cell-to-cell adhesion proteins: end truncation could be a prelude for adjusting the refractive index of the lens to prevent spherical aberration.
    Sindhu Kumari S; Varadaraj K
    Biochim Biophys Acta; 2014 Sep; 1840(9):2862-77. PubMed ID: 24821012
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The water permeability of lens aquaporin-0 depends on its lipid bilayer environment.
    Tong J; Canty JT; Briggs MM; McIntosh TJ
    Exp Eye Res; 2013 Aug; 113():32-40. PubMed ID: 23680159
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Micro-domains of AQP0 in lens equatorial fibers.
    Zampighi GA; Eskandari S; Hall JE; Zampighi L; Kreman M
    Exp Eye Res; 2002 Nov; 75(5):505-19. PubMed ID: 12457863
    [TBL] [Abstract][Full Text] [Related]  

  • 20. BFSP1 C-terminal domains released by post-translational processing events can alter significantly the calcium regulation of AQP0 water permeability.
    Tapodi A; Clemens DM; Uwineza A; Jarrin M; Goldberg MW; Thinon E; Heal WP; Tate EW; Nemeth-Cahalan K; Vorontsova I; Hall JE; Quinlan RA
    Exp Eye Res; 2019 Aug; 185():107585. PubMed ID: 30790544
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.