BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 19281768)

  • 1. Urothelial transdifferentiation to prostate epithelia is mediated by paracrine TGF-beta signaling.
    Li X; Wang Y; Sharif-Afshar AR; Uwamariya C; Yi A; Ishii K; Hayward SW; Matusik RJ; Bhowmick NA
    Differentiation; 2009 Jan; 77(1):95-102. PubMed ID: 19281768
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Loss of TGF-beta type II receptor in fibroblasts promotes mammary carcinoma growth and invasion through upregulation of TGF-alpha-, MSP- and HGF-mediated signaling networks.
    Cheng N; Bhowmick NA; Chytil A; Gorksa AE; Brown KA; Muraoka R; Arteaga CL; Neilson EG; Hayward SW; Moses HL
    Oncogene; 2005 Jul; 24(32):5053-68. PubMed ID: 15856015
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TGFβ signaling limits lineage plasticity in prostate cancer.
    Hao Y; Bjerke GA; Pietrzak K; Melhuish TA; Han Y; Turner SD; Frierson HF; Wotton D
    PLoS Genet; 2018 May; 14(5):e1007409. PubMed ID: 29782499
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deletion of Tgfbr2 in Prx1-cre expressing mesenchyme results in defects in development of the long bones and joints.
    Seo HS; Serra R
    Dev Biol; 2007 Oct; 310(2):304-16. PubMed ID: 17822689
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo regeneration of murine prostate from dissociated cell populations of postnatal epithelia and urogenital sinus mesenchyme.
    Xin L; Ide H; Kim Y; Dubey P; Witte ON
    Proc Natl Acad Sci U S A; 2003 Sep; 100 Suppl 1(Suppl 1):11896-903. PubMed ID: 12909713
    [TBL] [Abstract][Full Text] [Related]  

  • 6. YWK-II/APLP2 inhibits TGF-β signaling by interfering with the TGFBR2-Hsp90 interaction.
    Tuersuntuoheti A; Li Q; Teng Y; Li X; Huang R; Lu Y; Li K; Liang J; Miao S; Wu W; Song W
    Biochim Biophys Acta Mol Cell Res; 2023 Oct; 1870(7):119548. PubMed ID: 37479189
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decoding spatiotemporal transcriptional dynamics and epithelial fibroblast crosstalk during gastroesophageal junction development through single cell analysis.
    Kumar N; Prakash PG; Wentland C; Kurian SM; Jethva G; Brinkmann V; Mollenkopf HJ; Krammer T; Toussaint C; Saliba AE; Biebl M; Jürgensen C; Wiedenmann B; Meyer TF; Gurumurthy RK; Chumduri C
    Nat Commun; 2024 Apr; 15(1):3064. PubMed ID: 38594232
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring the Wnt Pathway as a Therapeutic Target for Prostate Cancer.
    Koushyar S; Meniel VS; Phesse TJ; Pearson HB
    Biomolecules; 2022 Feb; 12(2):. PubMed ID: 35204808
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alterations in TGFβ signaling during prostate cancer progression.
    Thompson-Elliott B; Johnson R; Khan SA
    Am J Clin Exp Urol; 2021; 9(4):318-328. PubMed ID: 34541030
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pluripotent stem cell differentiation as an emerging model to study human prostate development.
    Yu Y; Jiang W
    Stem Cell Res Ther; 2020 Jul; 11(1):285. PubMed ID: 32678004
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heparan sulfate inhibits transforming growth factor β signaling and functions in cis and in trans to regulate prostate stem/progenitor cell activities.
    Rai S; Alsaidan OA; Yang H; Cai H; Wang L
    Glycobiology; 2020 May; 30(6):381-395. PubMed ID: 31829419
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rationale and Roadmap for Developing Panels of Hotspot Cancer Driver Gene Mutations as Biomarkers of Cancer Risk.
    Harris KL; Myers MB; McKim KL; Elespuru RK; Parsons BL
    Environ Mol Mutagen; 2020 Jan; 61(1):152-175. PubMed ID: 31469467
    [TBL] [Abstract][Full Text] [Related]  

  • 13. miR-33a hinders the differentiation of adipose mesenchymal stem cells towards urothelial cells in an inductive condition by targeting β‑catenin and TGFR.
    Fan G; Xu Z; Hu X; Li M; Zhou J; Zeng Y; Xie Y
    Mol Med Rep; 2018 Feb; 17(2):2341-2348. PubMed ID: 29207162
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RET-mediated glial cell line-derived neurotrophic factor signaling inhibits mouse prostate development.
    Park HJ; Bolton EC
    Development; 2017 Jun; 144(12):2282-2293. PubMed ID: 28506996
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TGF-β Family Signaling in Ductal Differentiation and Branching Morphogenesis.
    Kahata K; Maturi V; Moustakas A
    Cold Spring Harb Perspect Biol; 2018 Mar; 10(3):. PubMed ID: 28289061
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Miz1, a Novel Target of ING4, Can Drive Prostate Luminal Epithelial Cell Differentiation.
    Berger PL; Winn ME; Miranti CK
    Prostate; 2017 Jan; 77(1):49-59. PubMed ID: 27527891
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mesenchymal-epithelial interaction techniques.
    Cunha GR; Baskin L
    Differentiation; 2016; 91(4-5):20-7. PubMed ID: 26610327
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glial cell line-derived neurotrophic factor induces cell proliferation in the mouse urogenital sinus.
    Park HJ; Bolton EC
    Mol Endocrinol; 2015 Feb; 29(2):289-306. PubMed ID: 25549043
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production of urothelium from pluripotent stem cells for regenerative applications.
    Osborn SL; Kurzrock EA
    Curr Urol Rep; 2015 Jan; 16(1):466. PubMed ID: 25404180
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Urothelial differentiation of human amniotic fluid stem cells by urothelium specific conditioned medium.
    Kang HH; Kang JJ; Kang HG; Chung SS
    Cell Biol Int; 2014 Apr; 38(4):531-7. PubMed ID: 24375948
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.