These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 19281857)
1. Microbial conversion of glucose to a novel chemical building block, 2-pyrone-4,6-dicarboxylic acid. Nakajima M; Nishino Y; Tamura M; Mase K; Masai E; Otsuka Y; Nakamura M; Sato K; Fukuda M; Shigehara K; Ohara S; Katayama Y; Kajita S Metab Eng; 2009; 11(4-5):213-20. PubMed ID: 19281857 [TBL] [Abstract][Full Text] [Related]
2. Efficient production of 2-pyrone 4,6-dicarboxylic acid as a novel polymer-based material from protocatechuate by microbial function. Otsuka Y; Nakamura M; Shigehara K; Sugimura K; Masai E; Ohara S; Katayama Y Appl Microbiol Biotechnol; 2006 Aug; 71(5):608-14. PubMed ID: 16322989 [TBL] [Abstract][Full Text] [Related]
3. Metabolic Engineering of Escherichia coli for Efficient Production of 2-Pyrone-4,6-dicarboxylic Acid from Glucose. Luo ZW; Kim WJ; Lee SY ACS Synth Biol; 2018 Sep; 7(9):2296-2307. PubMed ID: 30096230 [TBL] [Abstract][Full Text] [Related]
4. Application of microalgae hydrolysate as a fermentation medium for microbial production of 2-pyrone 4,6-dicarboxylic acid. Htet AN; Noguchi M; Ninomiya K; Tsuge Y; Kuroda K; Kajita S; Masai E; Katayama Y; Shikinaka K; Otsuka Y; Nakamura M; Honda R; Takahashi K J Biosci Bioeng; 2018 Jun; 125(6):717-722. PubMed ID: 29395960 [TBL] [Abstract][Full Text] [Related]
5. Metabolic engineering of Escherichia coli for high-level production of the biodegradable polyester monomer 2-pyrone-4,6-dicarboxylic acid. Wu F; Wang S; Zhou D; Gao S; Song G; Liang Y; Wang Q Metab Eng; 2024 May; 83():52-60. PubMed ID: 38521489 [TBL] [Abstract][Full Text] [Related]
6. Genetic and biochemical characterization of a 2-pyrone-4, 6-dicarboxylic acid hydrolase involved in the protocatechuate 4, 5-cleavage pathway of Sphingomonas paucimobilis SYK-6. Masai E; Shinohara S; Hara H; Nishikawa S; Katayama Y; Fukuda M J Bacteriol; 1999 Jan; 181(1):55-62. PubMed ID: 9864312 [TBL] [Abstract][Full Text] [Related]
7. DdvK, a Novel Major Facilitator Superfamily Transporter Essential for 5,5'-Dehydrodivanillate Uptake by Sphingobium sp. Strain SYK-6. Mori K; Niinuma K; Fujita M; Kamimura N; Masai E Appl Environ Microbiol; 2018 Oct; 84(20):. PubMed ID: 30120118 [TBL] [Abstract][Full Text] [Related]
8. Genetic and biochemical characterization of 4-carboxy-2-hydroxymuconate-6-semialdehyde dehydrogenase and its role in the protocatechuate 4,5-cleavage pathway in Sphingomonas paucimobilis SYK-6. Masai E; Momose K; Hara H; Nishikawa S; Katayama Y; Fukuda M J Bacteriol; 2000 Dec; 182(23):6651-8. PubMed ID: 11073908 [TBL] [Abstract][Full Text] [Related]
9. In-planta production of the biodegradable polyester precursor 2-pyrone-4,6-dicarboxylic acid (PDC): Stacking reduced biomass recalcitrance with value-added co-product. Lin CY; Vuu KM; Amer B; Shih PM; Baidoo EEK; Scheller HV; Eudes A Metab Eng; 2021 Jul; 66():148-156. PubMed ID: 33895365 [TBL] [Abstract][Full Text] [Related]
10. Development of the production of 2-pyrone-4,6-dicarboxylic acid from lignin extracts, which are industrially formed as by-products, as raw materials. Suzuki Y; Okamura-Abe Y; Nakamura M; Otsuka Y; Araki T; Otsuka H; Navarro RR; Kamimura N; Masai E; Katayama Y J Biosci Bioeng; 2020 Jul; 130(1):71-75. PubMed ID: 32238321 [TBL] [Abstract][Full Text] [Related]
11. Microbial production of 2-pyrone-4,6-dicarboxylic acid from lignin derivatives in an engineered Pseudomonas putida and its application for the synthesis of bio-based polyester. Lee S; Jung YJ; Park SJ; Ryu MH; Kim JE; Song HM; Kang KH; Song BK; Sung BH; Kim YH; Kim HT; Joo JC Bioresour Technol; 2022 May; 352():127106. PubMed ID: 35378283 [TBL] [Abstract][Full Text] [Related]
12. Multi-step biosynthesis of the biodegradable polyester monomer 2-pyrone-4,6-dicarboxylic acid from glucose. Zhou D; Wu F; Peng Y; Qazi MA; Li R; Wang Y; Wang Q Biotechnol Biofuels Bioprod; 2023 Jun; 16(1):92. PubMed ID: 37264438 [TBL] [Abstract][Full Text] [Related]
13. Metabolic engineering for the production of shikimic acid in an evolved Escherichia coli strain lacking the phosphoenolpyruvate: carbohydrate phosphotransferase system. Escalante A; Calderón R; Valdivia A; de Anda R; Hernández G; Ramírez OT; Gosset G; Bolívar F Microb Cell Fact; 2010 Apr; 9():21. PubMed ID: 20385022 [TBL] [Abstract][Full Text] [Related]
14. Constitutive expression of selected genes from the pentose phosphate and aromatic pathways increases the shikimic acid yield in high-glucose batch cultures of an Escherichia coli strain lacking PTS and pykF. Rodriguez A; Martínez JA; Báez-Viveros JL; Flores N; Hernández-Chávez G; Ramírez OT; Gosset G; Bolivar F Microb Cell Fact; 2013 Sep; 12():86. PubMed ID: 24079972 [TBL] [Abstract][Full Text] [Related]
15. Hydroaromatic equilibration during biosynthesis of shikimic acid. Knop DR; Draths KM; Chandran SS; Barker JL; von Daeniken R; Weber W; Frost JW J Am Chem Soc; 2001 Oct; 123(42):10173-82. PubMed ID: 11603966 [TBL] [Abstract][Full Text] [Related]
16. Degradation of 3-O-methylgallate in Sphingomonas paucimobilis SYK-6 by pathways involving protocatechuate 4,5-dioxygenase. Kasai D; Masai E; Katayama Y; Fukuda M FEMS Microbiol Lett; 2007 Sep; 274(2):323-8. PubMed ID: 17645527 [TBL] [Abstract][Full Text] [Related]
17. Identification of the protocatechuate transporter gene in Sphingobium sp. strain SYK-6 and effects of overexpression on production of a value-added metabolite. Mori K; Kamimura N; Masai E Appl Microbiol Biotechnol; 2018 Jun; 102(11):4807-4816. PubMed ID: 29675799 [TBL] [Abstract][Full Text] [Related]
18. Benzene-free synthesis of catechol: interfacing microbial and chemical catalysis. Li W; Xie D; Frost JW J Am Chem Soc; 2005 Mar; 127(9):2874-82. PubMed ID: 15740122 [TBL] [Abstract][Full Text] [Related]
19. Biosynthesis of phlorisovalerophenone and 4-hydroxy-6-isobutyl-2-pyrone in Escherichia coli from glucose. Zhou W; Zhuang Y; Bai Y; Bi H; Liu T; Ma Y Microb Cell Fact; 2016 Aug; 15(1):149. PubMed ID: 27577056 [TBL] [Abstract][Full Text] [Related]
20. Discovery of novel enzyme genes involved in the conversion of an arylglycerol-β-aryl ether metabolite and their use in generating a metabolic pathway for lignin valorization. Higuchi Y; Kato R; Tsubota K; Kamimura N; Westwood NJ; Masai E Metab Eng; 2019 Sep; 55():258-267. PubMed ID: 31390538 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]