BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

621 related articles for article (PubMed ID: 19282094)

  • 1. Performance evaluation of methods for two-dimensional displacement and strain estimation using ultrasound radio frequency data.
    Lopata RG; Nillesen MM; Hansen HH; Gerrits IH; Thijssen JM; de Korte CL
    Ultrasound Med Biol; 2009 May; 35(5):796-812. PubMed ID: 19282094
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance of two dimensional displacement and strain estimation techniques using a phased array transducer.
    Lopata RG; Nillesen MM; Hansen HH; Gerrits IH; Thijssen JM; de Korte CL
    Ultrasound Med Biol; 2009 Dec; 35(12):2031-41. PubMed ID: 19854565
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Methodical study on the estimation of strain in shearing and rotating structures using radio frequency ultrasound based on 1-D and 2-D strain estimation techniques.
    Lopata R; Hansen H; Nillesen M; Thijssen J; Kapusta L; de Korte C
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Apr; 57(4):855-65. PubMed ID: 20378448
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct and gradient-based average strain estimation by using weighted nearest neighbor cross-correlation peaks.
    Hussain MA; Abu Anas EM; Alam SK; Lee SY; Hasan MK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Aug; 59(8):1713-28. PubMed ID: 22899118
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrasound frame rate requirements for cardiac elastography: experimental and in vivo results.
    Chen H; Varghese T; Rahko PS; Zagzebski JA
    Ultrasonics; 2009 Jan; 49(1):98-111. PubMed ID: 18657839
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the differences between two-dimensional and three-dimensional simulations for assessing elastographic image quality: a simulation study.
    Patil AV; Krouskop TA; Ophir J; Srinivasan S
    Ultrasound Med Biol; 2008 Jul; 34(7):1129-38. PubMed ID: 18343016
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrasonic axial strain measurement for lateral tissue deformation.
    Sumi C
    Ultrasound Med Biol; 2007 Nov; 33(11):1830-7. PubMed ID: 17673360
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimating axial and lateral strain using a synthetic aperture elastographic imaging system.
    Korukonda S; Doyley MM
    Ultrasound Med Biol; 2011 Nov; 37(11):1893-908. PubMed ID: 21962579
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Angular strain estimation method for elastography.
    Bae U; Kim Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Dec; 54(12):2653-61. PubMed ID: 18276572
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strain estimation by a Fourier Series-based extrema tracking algorithm for elastography.
    Wang W; Hu D; Wang J; Zou W
    Ultrasonics; 2015 Sep; 62():278-91. PubMed ID: 26096883
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of windowing effects on elastography images: Simulation, phantom and in vivo studies.
    Ahmed R; Arfin R; Rubel MH; Islam KK; Jia C; Metaxas D; Garra BS; Alam SK
    Ultrasonics; 2016 Mar; 66():140-153. PubMed ID: 26647169
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sub-sample displacement estimation from digitized ultrasound RF signals using multi-dimensional polynomial fitting of the cross-correlation function.
    Zahiri Azar R; Goksel O; Salcudean SE
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Nov; 57(11):2403-20. PubMed ID: 21041129
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Principal component analysis of shear strain effects.
    Chen H; Varghese T
    Ultrasonics; 2009 May; 49(4-5):472-83. PubMed ID: 19201435
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional cardiac strain imaging in healthy children using RF-data.
    Lopata RG; Nillesen MM; Thijssen JM; Kapusta L; de Korte CL
    Ultrasound Med Biol; 2011 Sep; 37(9):1399-408. PubMed ID: 21767901
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fast axial and lateral displacement estimation in myocardial elastography based on RF signals with predictions.
    Zhang Y; Sun T; Teng Y; Li H; Kang Y
    Biomed Mater Eng; 2015; 26 Suppl 1():S1633-9. PubMed ID: 26405928
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phase-based block matching applied to motion estimation with unconventional beamforming strategies.
    Basarab A; Gueth P; Liebgott H; Delachartre P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 May; 56(5):945-57. PubMed ID: 19473913
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical derivation of SNR, CNR and spatial resolution for a local adaptive strain estimator for elastography.
    Srinivasan S; Ophir J; Alam SK
    Ultrasound Med Biol; 2004 Sep; 30(9):1185-97. PubMed ID: 15550322
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimation of the optimal maximum beam angle and angular increment for normal and shear strain estimation.
    Rao M; Varghese T
    IEEE Trans Biomed Eng; 2009 Mar; 56(3):760-9. PubMed ID: 19272930
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Signal-to-noise ratio, contrast-to-noise ratio and their trade-offs with resolution in axial-shear strain elastography.
    Thitaikumar A; Krouskop TA; Ophir J
    Phys Med Biol; 2007 Jan; 52(1):13-28. PubMed ID: 17183125
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessing image quality in effective Poisson's ratio elastography and poroelastography: I.
    Righetti R; Srinivasan S; Kumar AT; Ophir J; Krouskop TA
    Phys Med Biol; 2007 Mar; 52(5):1303-20. PubMed ID: 17301456
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 32.