These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

453 related articles for article (PubMed ID: 19282487)

  • 1. The basis of vagal efferent control of heart rate in a neotropical fish, the pacu, Piaractus mesopotamicus.
    Taylor EW; Leite CA; Florindo LH; Beläo T; Rantin FT
    J Exp Biol; 2009 Apr; 212(Pt 7):906-13. PubMed ID: 19282487
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Central control of cardiorespiratory interactions in fish.
    Taylor EW; Leite CA; Levings JJ
    Acta Histochem; 2009; 111(3):257-67. PubMed ID: 19193400
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of the vagus nerve in the generation of cardiorespiratory interactions in a neotropical fish, the pacu, Piaractus mesopotamicus.
    Leite CA; Taylor EW; Guerra CD; Florindo LH; Belão T; Rantin FT
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2009 Aug; 195(8):721-31. PubMed ID: 19430799
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coupling of the respiratory rhythm in fish with activity in hypobranchial nerves and with heartbeat.
    Taylor EW; Campbell HA; Levings JJ; Young MJ; Butler PJ; Egginton S
    Physiol Biochem Zool; 2006; 79(6):1000-9. PubMed ID: 17041866
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Parasympathetic regulation of the heart in teleosts and factors determining the regulatory direction of the chronotropic effect].
    Kopylova GN; Krupnova EN; Samonina GE
    Fiziol Zh SSSR Im I M Sechenova; 1989 Jul; 75(7):936-41. PubMed ID: 2806669
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spontaneous efferent activity in branches of the vagus nerve controlling heart rate and ventilation in the dogfish.
    Barrett DJ; Taylor EW
    J Exp Biol; 1985 Jul; 117():433-48. PubMed ID: 4067504
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The evolution of efferent vagal control of the heart in vertebrates.
    Taylor EW
    Cardioscience; 1994 Sep; 5(3):173-82. PubMed ID: 7827254
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of parasympathetic and baroreceptor control of heart rate.
    Ferrari AU
    Cardioscience; 1993 Mar; 4(1):9-13. PubMed ID: 8471742
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced cardiac vagal efferent activity does not explain training-induced bradycardia.
    Scott AS; Eberhard A; Ofir D; Benchetrit G; Dinh TP; Calabrese P; Lesiuk V; Perrault H
    Auton Neurosci; 2004 May; 112(1-2):60-8. PubMed ID: 15233931
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of acute vagal nerve stimulation on the early passive electrical changes induced by myocardial ischaemia in dogs: heart rate-mediated attenuation.
    Del Rio CL; Dawson TA; Clymer BD; Paterson DJ; Billman GE
    Exp Physiol; 2008 Aug; 93(8):931-44. PubMed ID: 18376003
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [A new model of the cardio-cardiac reflex].
    Kamenskaia VN; Samonina GE; Udel'nov MG
    Fiziol Zh SSSR Im I M Sechenova; 1976 May; 62(5):703-10. PubMed ID: 1278549
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic changes in baroreceptor-sympathetic coupling during the respiratory cycle.
    Gebber GL; Das M; Barman SM
    Brain Res; 2005 Jun; 1046(1-2):216-23. PubMed ID: 15869746
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation of respiratory sinus arrhythmia in rats with central pattern generator hardware.
    Nogaret A; Zhao L; Moraes DJ; Paton JF
    J Neurosci Methods; 2013 Jan; 212(1):124-32. PubMed ID: 23026190
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Parasympathetic regulation of heart rate in rats after 5/6 nephrectomy is impaired despite functionally intact cardiac vagal innervation.
    Kuncová J; Svíglerová J; Kummer W; Rajdl D; Chottová-Dvoráková M; Tonar Z; Nalos L; Stengl M
    Nephrol Dial Transplant; 2009 Aug; 24(8):2362-70. PubMed ID: 19321759
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Presynaptic modulation of tonic and respiratory inputs to cardiovagal motoneurons by substance P.
    Hou L; Tang H; Chen Y; Wang L; Zhou X; Rong W; Wang J
    Brain Res; 2009 Aug; 1284():31-40. PubMed ID: 19500558
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cervical efferent vagal stimulation related or unrelated to cardiac cycles: comparison of negative atrial inotropic effects.
    Cevese A; Poltronieri R; Schena F; Verlato G; Zaffagni C
    Boll Soc Ital Biol Sper; 1984 Nov; 60(11):2009-16. PubMed ID: 6525253
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Functional anatomy of the glossopharyngeal, vagus, accessory and hypoglossal cranial nerves].
    Simon E; Mertens P
    Neurochirurgie; 2009 Apr; 55(2):132-5. PubMed ID: 19304301
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Modulating action of neurotensin on the parasympathetic regulation of cardiac rhythm].
    Osadchiĭ OE; Pokrovskiĭ VM; Kurzanov AN
    Biull Eksp Biol Med; 1993 May; 115(5):453-5. PubMed ID: 8043817
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving estimation of cardiac vagal tone during spontaneous breathing using a paced breathing calibration.
    Wilhelm FH; Grossman P; Coyle MA
    Biomed Sci Instrum; 2004; 40():317-24. PubMed ID: 15133978
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Current concepts concerning nervous regulation of cardiac activity in fish].
    Kamenskaia VN; Samonina GE
    Nauchnye Doki Vyss Shkoly Biol Nauki; 1975; (2):41-9. PubMed ID: 1139011
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 23.