BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 19282557)

  • 21. Noninvasive activity-based control of an implantable rotary blood pump: comparative software simulation study.
    Karantonis DM; Lim E; Mason DG; Salamonsen RF; Ayre PJ; Lovell NH
    Artif Organs; 2010 Feb; 34(2):E34-45. PubMed ID: 20420588
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Parameter-optimized model of cardiovascular-rotary blood pump interactions.
    Lim E; Dokos S; Cloherty SL; Salamonsen RF; Mason DG; Reizes JA; Lovell NH
    IEEE Trans Biomed Eng; 2010 Feb; 57(2):254-66. PubMed ID: 19770086
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparison of two different blood pumps on delivery of gaseous microemboli during pulsatile and nonpulsatile perfusion in a simulated infant CPB model.
    Wang S; Kunselman AR; Myers JL; Undar A
    ASAIO J; 2008; 54(5):538-41. PubMed ID: 18812749
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fluorescent image tracking velocimetry of the Nimbus AxiPump.
    Kerrigan JP; Shaffer FD; Maher TR; Dennis TJ; Borovetz HS; Antaki JF
    ASAIO J; 1993; 39(3):M639-43. PubMed ID: 8268616
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Estimation of cardiac function with rotary blood pump.
    Nakata K; Akiyama K; Sankai Y; Shiono M; Orime Y; Saito Y; Hata M; Sezai A; Minami T; Negishi N
    Ann Thorac Cardiovasc Surg; 2007 Aug; 13(4):240-6. PubMed ID: 17717499
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Design and initial testing of a mock human circulatory loop for left ventricular assist device performance testing.
    Liu Y; Allaire P; Wood H; Olsen D
    Artif Organs; 2005 Apr; 29(4):341-5. PubMed ID: 15787631
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fully autonomous preload-sensitive control of implantable rotary blood pumps.
    Arndt A; Nüsser P; Lampe B
    Artif Organs; 2010 Sep; 34(9):726-35. PubMed ID: 20883392
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development of a reliable automatic speed control system for rotary blood pumps.
    Vollkron M; Schima H; Huber L; Benkowski R; Morello G; Wieselthaler G
    J Heart Lung Transplant; 2005 Nov; 24(11):1878-85. PubMed ID: 16297795
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Development of a non-pulsatile permanent rotary blood pump.
    Nose Y; Kawahito K
    Eur J Cardiothorac Surg; 1997 Apr; 11 Suppl():S32-8. PubMed ID: 9271179
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Numerical modeling of hemodynamics with pulsatile impeller pump support.
    Shi Y; Lawford PV; Hose DR
    Ann Biomed Eng; 2010 Aug; 38(8):2621-34. PubMed ID: 20232153
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Acute hemodynamic study of Tai-Ta left ventricular assist device in a canine model.
    Shyu JJ; Chou NK; Lee CJ; Chen CF; Shau YW; Wang SS; Chu SH
    Artif Organs; 2004 Dec; 28(12):1095-101. PubMed ID: 15554938
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Viscosity-adjusted estimation of pressure head and pump flow with quasi-pulsatile modulation of rotary blood pump for a total artificial heart.
    Yurimoto T; Hara S; Isoyama T; Saito I; Ono T; Abe Y
    J Artif Organs; 2016 Sep; 19(3):219-25. PubMed ID: 27022734
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification and classification of physiologically significant pumping states in an implantable rotary blood pump.
    Karantonis DM; Lovell NH; Ayre PJ; Mason DG; Cloherty SL
    Artif Organs; 2006 Sep; 30(9):671-9. PubMed ID: 16934095
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Physiological control of a rotary blood pump with selectable therapeutic options: control of pulsatility gradient.
    Arndt A; Nüsser P; Graichen K; Müller J; Lampe B
    Artif Organs; 2008 Oct; 32(10):761-71. PubMed ID: 18959664
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hemodynamic system analysis of intraarterial microaxial pumps in vitro and in vivo.
    Siess T; Meyns B; Spielvogel K; Reul H; Rau G; Flameng W
    Artif Organs; 1996 Jun; 20(6):650-61. PubMed ID: 8817972
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Indirect flow rate estimation of the NEDO PI Gyro pump for chronic BVAD experiments.
    Ogawa D; Yoshizawa M; Tanaka A; Abe K; Olegario P; Motomura T; Okubo H; Oda T; Okahisa T; Igo SR; Nosé Y
    ASAIO J; 2006; 52(3):266-71. PubMed ID: 16760714
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Power consumption of rotary blood pumps: pulsatile versus constant-speed mode.
    Pirbodaghi T; Cotter C; Bourque K
    Artif Organs; 2014 Dec; 38(12):1024-8. PubMed ID: 24842216
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The impact of pump settings on the quality of pulsatility.
    Rider AR; Ressler NM; Karkhanis TR; Kunselman AR; Wang S; Undar A
    ASAIO J; 2009; 55(1):100-5. PubMed ID: 19092653
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development of the pulsation device for rotary blood pumps.
    Yambe T; Shiraishi Y; Sekine K; Shibata M; Yamaguchi T; Jian LH; Yoshizawa M; Tanaka A; Matsuki H; Sato F; Haga Y; Esashi M; Tabayashi K; Mitamura Y; Sasada H; Nitta S
    Artif Organs; 2005 Nov; 29(11):912-5. PubMed ID: 16266306
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Quantification of perfusion modes in terms of surplus hemodynamic energy levels in a simulated pediatric CPB model.
    Undar A; Ji B; Lukic B; Zapanta CM; Kunselman AR; Reibson JD; Weiss WJ; Rosenberg G; Myers JL
    ASAIO J; 2006; 52(6):712-7. PubMed ID: 17117064
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.