BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 19282829)

  • 1. Estimating activity-related energy expenditure under sedentary conditions using a tri-axial seismic accelerometer.
    van Hees VT; van Lummel RC; Westerterp KR
    Obesity (Silver Spring); 2009 Jun; 17(6):1287-92. PubMed ID: 19282829
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accelerometer prediction of energy expenditure: vector magnitude versus vertical axis.
    Howe CA; Staudenmayer JW; Freedson PS
    Med Sci Sports Exerc; 2009 Dec; 41(12):2199-206. PubMed ID: 19915498
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measuring free-living energy expenditure and physical activity with triaxial accelerometry.
    Plasqui G; Joosen AM; Kester AD; Goris AH; Westerterp KR
    Obes Res; 2005 Aug; 13(8):1363-9. PubMed ID: 16129718
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Is the ArteACC index a valid indicator of free-living physical activity in adolescents?
    Ekelund U; Aman J; Westerterp K
    Obes Res; 2003 Jun; 11(6):793-801. PubMed ID: 12805401
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of energy expenditure for physical activity using a triaxial accelerometer.
    Bouten CV; Westerterp KR; Verduin M; Janssen JD
    Med Sci Sports Exerc; 1994 Dec; 26(12):1516-23. PubMed ID: 7869887
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The use of uniaxial accelerometry for the assessment of physical-activity-related energy expenditure: a validation study against whole-body indirect calorimetry.
    Kumahara H; Schutz Y; Ayabe M; Yoshioka M; Yoshitake Y; Shindo M; Ishii K; Tanaka H
    Br J Nutr; 2004 Feb; 91(2):235-43. PubMed ID: 14756909
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physical activity pattern and activity energy expenditure in healthy pregnant and non-pregnant Swedish women.
    Löf M
    Eur J Clin Nutr; 2011 Dec; 65(12):1295-301. PubMed ID: 21792212
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimation of free-living energy expenditure using a novel activity monitor designed to minimize obtrusiveness.
    Bonomi AG; Plasqui G; Goris AH; Westerterp KR
    Obesity (Silver Spring); 2010 Sep; 18(9):1845-51. PubMed ID: 20186133
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of energy expenditure by recording heart rate and body acceleration.
    Meijer GA; Westerterp KR; Koper H; ten Hoor F
    Med Sci Sports Exerc; 1989 Jun; 21(3):343-7. PubMed ID: 2733585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accuracy of the Actiheart for the assessment of energy expenditure in adults.
    Crouter SE; Churilla JR; Bassett DR
    Eur J Clin Nutr; 2008 Jun; 62(6):704-11. PubMed ID: 17440515
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimation of daily energy needs with the FAO/WHO/UNU 1985 procedures in adults: comparison to whole-body indirect calorimetry measurements.
    Alfonzo-González G; Doucet E; Alméras N; Bouchard C; Tremblay A
    Eur J Clin Nutr; 2004 Aug; 58(8):1125-31. PubMed ID: 15054425
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accurate prediction of energy expenditure using a shoe-based activity monitor.
    Sazonova N; Browning RC; Sazonov E
    Med Sci Sports Exerc; 2011 Jul; 43(7):1312-21. PubMed ID: 21131868
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predictive validity of three ActiGraph energy expenditure equations for children.
    Trost SG; Way R; Okely AD
    Med Sci Sports Exerc; 2006 Feb; 38(2):380-7. PubMed ID: 16531910
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic efficiency and energy expenditure during short-term overfeeding.
    Joosen AM; Bakker AH; Westerterp KR
    Physiol Behav; 2005 Aug; 85(5):593-7. PubMed ID: 16039676
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Total energy expenditure, resting metabolic rate and physical activity level in free-living rural elderly men and women from Cuba, Chile and México.
    Alemán-Mateo H; Salazar G; Hernández-Triana M; Valencia ME
    Eur J Clin Nutr; 2006 Nov; 60(11):1258-65. PubMed ID: 16721397
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Validation and calibration of physical activity monitors in children.
    Puyau MR; Adolph AL; Vohra FA; Butte NF
    Obes Res; 2002 Mar; 10(3):150-7. PubMed ID: 11886937
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physical activity in confined conditions as an indicator of free-living physical activity.
    Westerterp KR; Kester AD
    Obes Res; 2003 Jul; 11(7):865-8. PubMed ID: 12855756
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Study on the validation of the computer science application's activity monitor in assessing the physical activity among adults using doubly labeled water method].
    Liu AL; Li YP; Song J; Pan H; Han XM; Ma GS
    Zhonghua Liu Xing Bing Xue Za Zhi; 2005 Mar; 26(3):197-200. PubMed ID: 15941509
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Validity of combining heart rate and uniaxial acceleration to measure free-living physical activity energy expenditure in young men.
    Villars C; Bergouignan A; Dugas J; Antoun E; Schoeller DA; Roth H; Maingon AC; Lefai E; Blanc S; Simon C
    J Appl Physiol (1985); 2012 Dec; 113(11):1763-71. PubMed ID: 23019315
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimating energy expenditure from raw accelerometry in three types of locomotion.
    Brandes M; VAN Hees VT; Hannöver V; Brage S
    Med Sci Sports Exerc; 2012 Nov; 44(11):2235-42. PubMed ID: 22776868
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.