These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

443 related articles for article (PubMed ID: 19284722)

  • 61. Br(2Pj) atom formation dynamics in ultraviolet photodissociation of tert-butyl bromide and iso-butyl bromide.
    Wang Y; Zhang S; Wei Z; Zheng Q; Zhang B
    J Chem Phys; 2006 Nov; 125(18):184307. PubMed ID: 17115752
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Photodissociation dynamics of propionyl chloride in the ultraviolet region.
    Wei ZR; Zhang XP; Lee WB; Zhang B; Lin KC
    J Chem Phys; 2009 Jan; 130(1):014307. PubMed ID: 19140615
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Collision dynamics and reactive uptake of OH radicals at liquid surfaces of atmospheric interest.
    Waring C; King KL; Bagot PA; Costen ML; McKendrick KG
    Phys Chem Chem Phys; 2011 May; 13(18):8457-69. PubMed ID: 21409254
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Photodissociation dynamics of nitrobenzene and o-nitrotoluene.
    Lin MF; Lee YT; Ni CK; Xu S; Lin MC
    J Chem Phys; 2007 Feb; 126(6):064310. PubMed ID: 17313218
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Near-resonant energy transfer from highly vibrationally excited OH to N2.
    Burtt KD; Sharma RD
    J Chem Phys; 2008 Mar; 128(12):124311. PubMed ID: 18376923
    [TBL] [Abstract][Full Text] [Related]  

  • 66. State-resolved dynamics of the CN(B2Sigma+) and CH(A2Delta) excited products resulting from the VUV photodissociation of CH3CN.
    Howle CR; Arrowsmith AN; Chikan V; Leone SR
    J Phys Chem A; 2007 Jul; 111(29):6637-48. PubMed ID: 17388380
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Photodissociation dynamics of dichlorocarbene at 248 nm.
    Shin SK; Dagdigian PJ
    Phys Chem Chem Phys; 2006 Aug; 8(29):3446-52. PubMed ID: 16855724
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Br2 molecular elimination in photolysis of (COBr)2 at 248 nm by using cavity ring-down absorption spectroscopy: a photodissociation channel being ignored.
    Wu CC; Lin HC; Chang YB; Tsai PY; Yeh YY; Fan H; Lin KC; Francisco JS
    J Chem Phys; 2011 Dec; 135(23):234308. PubMed ID: 22191876
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Photodissociation of NO2 in the (2) (2)B2 state: the O((1)D2) dissociation channel.
    Wilkinson I; de Miranda MP; Whitaker BJ
    J Chem Phys; 2009 Aug; 131(5):054308. PubMed ID: 19673563
    [TBL] [Abstract][Full Text] [Related]  

  • 70. State-resolved distribution of OH X 2Pi products arising from electronic quenching of OH A 2Sigma+ by N2.
    Dempsey LP; Sechler TD; Murray C; Lester MI; Matsika S
    J Chem Phys; 2009 Mar; 130(10):104307. PubMed ID: 19292534
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Photochemical formation of HCO and CH3 on the ground S0 (1A') state of CH3CHO.
    Heazlewood BR; Rowling SJ; Maccarone AT; Jordan MJ; Kable SH
    J Chem Phys; 2009 Feb; 130(5):054310. PubMed ID: 19206976
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Vibrational and rotational distributions of the CH(A2Delta) product of the C(2)H + O(3P) reaction studied by fourier transform visible (FTVIS) emission spectroscopy.
    Chikan V; Leone SR
    J Phys Chem A; 2005 Dec; 109(47):10646-53. PubMed ID: 16863113
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Molecular elimination in photolysis of o- and p-fluorotoluene at 193 nm: Internal energy of HF determined with time-resolved Fourier transform spectroscopy.
    Yang SK; Liu SY; Chen HF; Lee YP
    J Chem Phys; 2005 Dec; 123(22):224304. PubMed ID: 16375473
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Reaction pathway for the nonadiabatic reaction of Ca(4s3d 1D)+H2-->CaH(X 2Sigma+)+H.
    Chang YL; Chen L; Hsiao MK; Chen JJ; Lin KC
    J Chem Phys; 2005 Feb; 122(8):84315. PubMed ID: 15836047
    [TBL] [Abstract][Full Text] [Related]  

  • 75. A comparison of the decomposition of electronically excited nitro-containing molecules with energetic moieties C-NO2, N-NO2, and O-NO2.
    Bhattacharya A; Guo Y; Bernstein ER
    J Chem Phys; 2012 Jan; 136(2):024321. PubMed ID: 22260593
    [TBL] [Abstract][Full Text] [Related]  

  • 76. State-to-state vibrational energy transfer in OH A2Sigma+ with N2.
    Sechler TD; Dempsey LP; Lester MI
    J Phys Chem A; 2009 Aug; 113(31):8845-51. PubMed ID: 19603759
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Hydrogen peroxide formation following the vacuum ultraviolet photodissociation of water ice films at 90 K.
    Yabushita A; Hama T; Iida D; Kawasaki M
    J Chem Phys; 2008 Jul; 129(1):014709. PubMed ID: 18624498
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Relaxation behavior of rovibrationally excited H2 in a rarefied expansion.
    Vankan P; Schram DC; Engeln R
    J Chem Phys; 2004 Nov; 121(20):9876-84. PubMed ID: 15549860
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Photodissociation of ozone in the Hartley band: Product state and angular distributions.
    McBane GC; Nguyen LT; Schinke R
    J Chem Phys; 2010 Oct; 133(14):144312. PubMed ID: 20950005
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Imaging studies of the photodissociation of H2S+ cations. II.
    Webb AD; Kawanaka N; Dixon RN; Ashfold MN
    J Chem Phys; 2007 Dec; 127(22):224308. PubMed ID: 18081397
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.