These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 19284731)

  • 1. Self-assembled nanogaps via seed-mediated growth of end-to-end linked gold nanorods.
    Jain T; Westerlund F; Johnson E; Moth-Poulsen K; Bjørnholm T
    ACS Nano; 2009 Apr; 3(4):828-34. PubMed ID: 19284731
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wet chemical synthesis of soluble gold nanogaps.
    Jain T; Tang Q; Bjørnholm T; Nørgaard K
    Acc Chem Res; 2014 Jan; 47(1):2-11. PubMed ID: 23944385
    [TBL] [Abstract][Full Text] [Related]  

  • 3. End-to-end assembly of gold nanorods via oligopeptide linking and surfactant control.
    Jain T; Roodbeen R; Reeler NE; Vosch T; Jensen KJ; Bjørnholm T; Nørgaard K
    J Colloid Interface Sci; 2012 Jun; 376(1):83-90. PubMed ID: 22480399
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gold nanorods dispersed in homopolymer films: optical properties controlled by self-assembly and percolation of nanorods.
    Jiang G; Hore MJ; Gam S; Composto RJ
    ACS Nano; 2012 Feb; 6(2):1578-88. PubMed ID: 22283716
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Growth of segmented gold nanorods with nanogaps by the electrochemical wet etching technique for single-electron transistor applications.
    Van Hoang N; Kumar S; Kim GH
    Nanotechnology; 2009 Mar; 20(12):125607. PubMed ID: 19420476
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Facile fabrication of large area of aggregated gold nanorods film for efficient surface-enhanced Raman scattering.
    Wang Y; Guo S; Chen H; Wang E
    J Colloid Interface Sci; 2008 Feb; 318(1):82-7. PubMed ID: 17928000
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of intensity and energy of CW UV light on the growth of gold nanorods.
    Miranda OR; Ahmadi TS
    J Phys Chem B; 2005 Aug; 109(33):15724-34. PubMed ID: 16852995
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Facile fabrication of distance-tunable Au-nanorod chips for single-nanoparticle plasmonic biosensors.
    Guo L; Zhou X; Kim DH
    Biosens Bioelectron; 2011 Jan; 26(5):2246-51. PubMed ID: 21035320
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Growth of gold nanorods and bipyramids using CTEAB surfactant.
    Kou X; Zhang S; Tsung CK; Yeung MH; Shi Q; Stucky GD; Sun L; Wang J; Yan C
    J Phys Chem B; 2006 Aug; 110(33):16377-83. PubMed ID: 16913766
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aligned growth of gold nanorods in PMMA channels: parallel preparation of nanogaps.
    Jain T; Lara-Avila S; Kervennic YV; Moth-Poulsen K; Nørgaard K; Kubatkin S; Bjørnholm T
    ACS Nano; 2012 May; 6(5):3861-7. PubMed ID: 22494354
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Directly monitoring the growth of gold nanoparticle seeds into gold nanorods.
    Wei Z; Zamborini FP
    Langmuir; 2004 Dec; 20(26):11301-4. PubMed ID: 15595748
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlled step growth of molecularly linked gold nanoparticles: from metallic monomers to dimers to polymeric nanoparticle chains.
    Hussain I; Brust M; Barauskas J; Cooper AI
    Langmuir; 2009 Feb; 25(4):1934-9. PubMed ID: 19159192
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of temperature and freeze-thaw processes on gold nanorods.
    Albert GC; Roumeliotis M; Carson JJ
    Nanotechnology; 2009 Dec; 20(50):505502. PubMed ID: 19923658
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Real time observation of chemical reactions of individual metal nanoparticles with high-throughput single molecule spectral microscopy.
    Cheng J; Liu Y; Cheng X; He Y; Yeung ES
    Anal Chem; 2010 Oct; 82(20):8744-9. PubMed ID: 20849132
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Directed self-assembly of gold-tipped CdSe nanorods.
    Salant A; Amitay-Sadovsky E; Banin U
    J Am Chem Soc; 2006 Aug; 128(31):10006-7. PubMed ID: 16881617
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The fabrication and characterization of adjustable nanogaps between gold electrodes on chip for electrical measurement of single molecules.
    Tian JH; Yang Y; Liu B; Schöllhorn B; Wu DY; Maisonhaute E; Muns AS; Chen Y; Amatore C; Tao NJ; Tian ZQ
    Nanotechnology; 2010 Jul; 21(27):274012. PubMed ID: 20571199
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Seed-mediated synthesis of palladium nanorods and branched nanocrystals and their use as recyclable Suzuki coupling reaction catalysts.
    Chen YH; Hung HH; Huang MH
    J Am Chem Soc; 2009 Jul; 131(25):9114-21. PubMed ID: 19507854
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A nanometre-scale electronic switch consisting of a metal cluster and redox-addressable groups.
    Gittins DI; Bethell D; Schiffrin DJ; Nichols RJ
    Nature; 2000 Nov; 408(6808):67-9. PubMed ID: 11081506
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecularly mediated processing and assembly of nanoparticles: exploring the interparticle interactions and structures.
    Lim SI; Zhong CJ
    Acc Chem Res; 2009 Jun; 42(6):798-808. PubMed ID: 19378982
    [TBL] [Abstract][Full Text] [Related]  

  • 20. First step in chemical preparation of metal nanogaps bridged by thiol end-capped molecular wires.
    Petersen AB; Thyrhaug E; Jain T; Kilsaa K; Bols M; Moth-Poulsen K; Harrit N; Bjørnholm T
    J Phys Chem B; 2010 Sep; 114(36):11771-7. PubMed ID: 20726577
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.