These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 19284731)

  • 21. Quantification and reactivity of functional groups in the ligand shell of PEGylated gold nanoparticles via a fluorescence-based assay.
    Maus L; Spatz JP; Fiammengo R
    Langmuir; 2009 Jul; 25(14):7910-7. PubMed ID: 19419188
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Simple and Rapid Functionalization of Gold Nanorods with Oligonucleotides Using an mPEG-SH/Tween 20-Assisted Approach.
    Li J; Zhu B; Zhu Z; Zhang Y; Yao X; Tu S; Liu R; Jia S; Yang CJ
    Langmuir; 2015 Jul; 31(28):7869-76. PubMed ID: 26101941
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Directing the growth of highly aligned gold nanorods through a surface chemical amidation reaction.
    Mieszawska AJ; Slawinski GW; Zamborini FP
    J Am Chem Soc; 2006 May; 128(17):5622-3. PubMed ID: 16637614
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A novel cobalt hexacyanoferrate nanocomposite on CNT scaffold by seed medium and application for biosensor.
    Wang S; Lu L; Yang M; Lei Y; Shen G; Yu R
    Anal Chim Acta; 2009 Oct; 651(2):220-6. PubMed ID: 19782815
    [TBL] [Abstract][Full Text] [Related]  

  • 25. One-step synthesis of large-aspect-ratio single-crystalline gold nanorods by using CTPAB and CTBAB surfactants.
    Kou X; Zhang S; Tsung CK; Yang Z; Yeung MH; Stucky GD; Sun L; Wang J; Yan C
    Chemistry; 2007; 13(10):2929-36. PubMed ID: 17183599
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reconfigurable assemblies of shape-changing nanorods.
    Nguyen TD; Glotzer SC
    ACS Nano; 2010 May; 4(5):2585-94. PubMed ID: 20408583
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In situ WetSTEM observation of gold nanorod self-assembly dynamics in a drying colloidal droplet.
    Novotný F; Wandrol P; Proška J; Slouf M
    Microsc Microanal; 2014 Apr; 20(2):385-93. PubMed ID: 24641815
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Deterministic assembly of linear gold nanorod chains as a platform for nanoscale applications.
    Rey A; Billardon G; Lörtscher E; Moth-Poulsen K; Stuhr-Hansen N; Wolf H; Bjørnholm T; Stemmer A; Riel H
    Nanoscale; 2013 Sep; 5(18):8680-8. PubMed ID: 23900232
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Depth of photothermal conversion of gold nanorods embedded in a tissue-like phantom.
    Didychuk CL; Ephrat P; Chamson-Reig A; Jacques SL; Carson JJ
    Nanotechnology; 2009 May; 20(19):195102. PubMed ID: 19420630
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Preferential end-to-end assembly of gold nanorods by biotin-streptavidin connectors.
    Caswell KK; Wilson JN; Bunz UH; Murphy CJ
    J Am Chem Soc; 2003 Nov; 125(46):13914-5. PubMed ID: 14611200
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Parallel Fabrication of Self-Assembled Nanogaps for Molecular Electronic Devices.
    Eklöf-Österberg J; Gschneidtner T; Tebikachew B; Lara-Avila S; Moth-Poulsen K
    Small; 2018 Dec; 14(50):e1803471. PubMed ID: 30358919
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Well-ordered end-to-end linkage of gold nanorods.
    Hu X; Cheng W; Wang T; Wang E; Dong S
    Nanotechnology; 2005 Oct; 16(10):2164-9. PubMed ID: 20817990
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Visualizing single-molecule diffusion in mesoporous materials.
    Zürner A; Kirstein J; Döblinger M; Bräuchle C; Bein T
    Nature; 2007 Nov; 450(7170):705-8. PubMed ID: 18046407
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Au growth on semiconductor nanorods: photoinduced versus thermal growth mechanisms.
    Menagen G; Macdonald JE; Shemesh Y; Popov I; Banin U
    J Am Chem Soc; 2009 Dec; 131(47):17406-11. PubMed ID: 19894717
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Shape homogenization and long-range arrangement of gold nanorods using a pH-responsive multiamine surfactant.
    Wu J; Jia W; Lu W; Jiang L
    ACS Appl Mater Interfaces; 2012 Dec; 4(12):6560-4. PubMed ID: 23186139
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Two strategies for the self-assembly of gold nanoparticles: Photoreaction and radical reaction.
    Huh S; Chae B; Kim SB
    J Colloid Interface Sci; 2008 Nov; 327(1):211-5. PubMed ID: 18755469
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Solution-processible fabrication of large-area patterned and unpatterned gold nanostructures.
    Zhang X; Liu H; Feng S
    Nanotechnology; 2009 Oct; 20(42):425303. PubMed ID: 19779226
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Manipulation of the growth of gold and silver nanomaterials on glass by seeding approach.
    Lee KH; Huang KM; Tseng WL; Chiu TC; Lin YW; Chang HT
    Langmuir; 2007 Jan; 23(3):1435-42. PubMed ID: 17241070
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Controlling the orientations of gold nanorods inside highly packed 2D arrays.
    Mahmoud MA
    Phys Chem Chem Phys; 2014 Dec; 16(47):26153-62. PubMed ID: 25360895
    [TBL] [Abstract][Full Text] [Related]  

  • 40. One-, two-, and three-dimensional superstructures of gold nanorods induced by dimercaptosuccinic acid.
    Sreeprasad TS; Samal AK; Pradeep T
    Langmuir; 2008 May; 24(9):4589-99. PubMed ID: 18393485
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.