These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 19284740)

  • 1. Synthesis of a fluorine-substituted puromycin derivative for Brønsted studies of ribosomal-catalyzed peptide bond formation.
    Okuda K; Hirota T; Kingery DA; Nagasawa H
    J Org Chem; 2009 Mar; 74(6):2609-12. PubMed ID: 19284740
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Uncovering the enzymatic pKa of the ribosomal peptidyl transferase reaction utilizing a fluorinated puromycin derivative.
    Okuda K; Seila AC; Strobel SA
    Biochemistry; 2005 May; 44(17):6675-84. PubMed ID: 15850401
    [TBL] [Abstract][Full Text] [Related]  

  • 3. What are the roles of substrate-assisted catalysis and proximity effects in peptide bond formation by the ribosome?
    Sharma PK; Xiang Y; Kato M; Warshel A
    Biochemistry; 2005 Aug; 44(34):11307-14. PubMed ID: 16114867
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Peptide bond formation does not involve acid-base catalysis by ribosomal residues.
    Bieling P; Beringer M; Adio S; Rodnina MV
    Nat Struct Mol Biol; 2006 May; 13(5):423-8. PubMed ID: 16648860
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The puromycin route to assess stereo- and regiochemical constraints on peptide bond formation in eukaryotic ribosomes.
    Starck SR; Qi X; Olsen BN; Roberts RW
    J Am Chem Soc; 2003 Jul; 125(27):8090-1. PubMed ID: 12837064
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural and functional prerequisites for ribosomal nascent peptide acceptors: attempts to decipher the nature of the ribosome's catalysis of peptide bond formation.
    Michel BY; Krishnakumar KS; Johansson M; Ehrenberg M; Strazewski P
    Nucleic Acids Symp Ser (Oxf); 2008; (52):33-4. PubMed ID: 18776239
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ten remarks on peptide bond formation on the ribosome.
    Rodnina MV; Beringer M; Bieling P
    Biochem Soc Trans; 2005 Jun; 33(Pt 3):493-8. PubMed ID: 15916550
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Importance of tRNA interactions with 23S rRNA for peptide bond formation on the ribosome: studies with substrate analogs.
    Beringer M; Rodnina MV
    Biol Chem; 2007 Jul; 388(7):687-91. PubMed ID: 17570820
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of certain puromycin analogues and their use in studying the peptidyl synthetase enzyme of e. coli and rat liver ribosomes.
    Ariatti M; Hawtrey AO
    S Afr J Med Sci; 1975; 40(4):197-203. PubMed ID: 1108234
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Mechanism of peptide bond formation on the ribosome--controversions].
    Bakowska-Zywicka K; Tyczewska A; Twardowski T
    Postepy Biochem; 2006; 52(2):166-72. PubMed ID: 17078506
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Minimal transition state charge stabilization of the oxyanion during peptide bond formation by the ribosome.
    Carrasco N; Hiller DA; Strobel SA
    Biochemistry; 2011 Dec; 50(48):10491-8. PubMed ID: 22035282
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of enzymatic transacylase Brønsted studies with application to the ribosome.
    Kingery DA; Strobel SA
    Acc Chem Res; 2012 Apr; 45(4):495-503. PubMed ID: 22122380
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ribosome-catalyzed synthesis of protein/oligopeptides with unnatural backbone.
    Abe K; Sato N; Kanatani K; Sando S; Aoyama Y
    Nucleic Acids Symp Ser (Oxf); 2005; (49):273-4. PubMed ID: 17150739
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A mechanistic study supports a two-step mechanism for peptide bond formation on the ribosome.
    Byun BJ; Kang YK
    Phys Chem Chem Phys; 2013 Sep; 15(36):14931-5. PubMed ID: 23900690
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oligonucleotide-directed peptide synthesis in a ribosome- and ribozyme-free system.
    Tamura K; Schimmel P
    Proc Natl Acad Sci U S A; 2001 Feb; 98(4):1393-7. PubMed ID: 11171961
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigations of the MceIJ-catalyzed posttranslational modification of the microcin E492 C-terminus: linkage of ribosomal and nonribosomal peptides to form "trojan horse" antibiotics.
    Nolan EM; Walsh CT
    Biochemistry; 2008 Sep; 47(35):9289-99. PubMed ID: 18690711
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Total syntheses of a conformationally locked North-type methanocarba puromycin analogue and a dinucleotide derivative.
    Michel BY; Strazewski P
    Chemistry; 2009 Jun; 15(25):6244-57. PubMed ID: 19441002
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time-resolved binding of azithromycin to Escherichia coli ribosomes.
    Petropoulos AD; Kouvela EC; Starosta AL; Wilson DN; Dinos GP; Kalpaxis DL
    J Mol Biol; 2009 Jan; 385(4):1179-92. PubMed ID: 19071138
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbocyclic puromycin: synthesis and inhibition of protein biosynthesis.
    Vince R; Daluge S; Brownell J
    J Med Chem; 1986 Nov; 29(11):2400-3. PubMed ID: 3783599
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The evolving ribosome: from non-coded peptide bond formation to sophisticated translation machinery.
    Davidovich C; Belousoff M; Bashan A; Yonath A
    Res Microbiol; 2009 Sep; 160(7):487-92. PubMed ID: 19619641
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.