BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

372 related articles for article (PubMed ID: 19284785)

  • 21. Post-translational modifications of Desulfovibrio vulgaris Hildenborough sulfate reduction pathway proteins.
    Gaucher SP; Redding AM; Mukhopadhyay A; Keasling JD; Singh AK
    J Proteome Res; 2008 Jun; 7(6):2320-31. PubMed ID: 18416566
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A tool to visualize and evaluate data obtained by liquid chromatography-electrospray ionization-mass spectrometry.
    Li XJ; Pedrioli PG; Eng J; Martin D; Yi EC; Lee H; Aebersold R
    Anal Chem; 2004 Jul; 76(13):3856-60. PubMed ID: 15228367
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Method for quantitative proteomics research by using metal element chelated tags coupled with mass spectrometry.
    Liu H; Zhang Y; Wang J; Wang D; Zhou C; Cai Y; Qian X
    Anal Chem; 2006 Sep; 78(18):6614-21. PubMed ID: 16970341
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of post-translationally modified recombinant protein using liquid chromatography/mass spectrometry.
    Wu XD; Kircher RA; McVerry PH; Malinzak DA
    Dev Biol (Basel); 2000; 103():61-7. PubMed ID: 11214254
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Development of a comprehensive multidimensional liquid chromatography system with tandem mass spectrometry detection for detailed characterization of recombinant proteins.
    Kajdan T; Cortes H; Kuppannan K; Young SA
    J Chromatogr A; 2008 May; 1189(1-2):183-95. PubMed ID: 18078946
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Observation of an unusually facile fragmentation pathway of gas-phase peptide ions: a study on the gas-phase fragmentation mechanism and energetics of tryptic peptides modified with 4-sulfophenyl isothiocyanate (SPITC) and 4-chlorosulfophenyl isocyanate (SPC) and their 18-crown-6 complexes.
    Shin JW; Lee YH; Hwang S; Lee SW
    J Mass Spectrom; 2007 Mar; 42(3):380-8. PubMed ID: 17200996
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Use of an integrated MS--multiplexed MS/MS data acquisition strategy for high-coverage peptide mapping studies.
    Chakraborty AB; Berger SJ; Gebler JC
    Rapid Commun Mass Spectrom; 2007; 21(5):730-44. PubMed ID: 17279597
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Peptidomic analysis of the larval Drosophila melanogaster central nervous system by two-dimensional capillary liquid chromatography quadrupole time-of-flight mass spectrometry.
    Baggerman G; Boonen K; Verleyen P; De Loof A; Schoofs L
    J Mass Spectrom; 2005 Feb; 40(2):250-60. PubMed ID: 15706625
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A statistical method for chromatographic alignment of LC-MS data.
    Wang P; Tang H; Fitzgibbon MP; McIntosh M; Coram M; Zhang H; Yi E; Aebersold R
    Biostatistics; 2007 Apr; 8(2):357-67. PubMed ID: 16880200
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterization of protein N-glycosylation.
    Medzihradszky KF
    Methods Enzymol; 2005; 405():116-38. PubMed ID: 16413313
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mapping site-specific protein N-glycosylations through liquid chromatography/mass spectrometry and targeted tandem mass spectrometry.
    Wu Y; Mechref Y; Klouckova I; Mayampurath A; Novotny MV; Tang H
    Rapid Commun Mass Spectrom; 2010 Apr; 24(7):965-72. PubMed ID: 20209665
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Automated mass correction and data interpretation for protein open-access liquid chromatography-mass spectrometry.
    Wagner CD; Hall JT; White WL; Miller LA; Williams JD
    J Mass Spectrom; 2007 Feb; 42(2):139-49. PubMed ID: 17221927
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Strategy for determination of in vitro protein acetylation sites by using isotope-labeled acetyl coenzyme A and liquid chromatography-mass spectrometry.
    Wu HY; Huang FY; Chang YC; Hsieh MC; Liao PC
    Anal Chem; 2008 Aug; 80(16):6178-89. PubMed ID: 18616279
    [TBL] [Abstract][Full Text] [Related]  

  • 34. New approach for rapid detection of known hemoglobin variants using LC-MS/MS combined with a peptide database.
    Basilico F; Di Silvestre D; Sedini S; Petretto A; Levreri I; Melioli G; Farina C; Mori F; Mauri PL
    J Mass Spectrom; 2007 Mar; 42(3):288-92. PubMed ID: 17177235
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparative study of [Three] LC-MALDI workflows for the analysis of complex proteomic samples.
    Hattan SJ; Marchese J; Khainovski N; Martin S; Juhasz P
    J Proteome Res; 2005; 4(6):1931-41. PubMed ID: 16335937
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Global histone analysis by mass spectrometry reveals a high content of acetylated lysine residues in the malaria parasite Plasmodium falciparum.
    Trelle MB; Salcedo-Amaya AM; Cohen AM; Stunnenberg HG; Jensen ON
    J Proteome Res; 2009 Jul; 8(7):3439-50. PubMed ID: 19351122
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Selective detection of thiosulfate-containing peptides using tandem mass spectrometry.
    Raftery MJ
    Rapid Commun Mass Spectrom; 2005; 19(5):674-82. PubMed ID: 15700231
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Detergent-free biotin switch combined with liquid chromatography/tandem mass spectrometry in the analysis of S-nitrosylated proteins.
    Han P; Chen C
    Rapid Commun Mass Spectrom; 2008 Apr; 22(8):1137-45. PubMed ID: 18335467
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comprehensive identification of post-translational modifications of rat bone osteopontin by mass spectrometry.
    Keykhosravani M; Doherty-Kirby A; Zhang C; Brewer D; Goldberg HA; Hunter GK; Lajoie G
    Biochemistry; 2005 May; 44(18):6990-7003. PubMed ID: 15865444
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Specific isolation of O-linked N-acetylglucosamine glycopeptides from complex mixtures.
    Hayes BK; Greis KD; Hart GW
    Anal Biochem; 1995 Jun; 228(1):115-22. PubMed ID: 8572267
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.