BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 19284890)

  • 1. Detector solid angle formulas for use in X-ray energy dispersive spectrometry.
    Zaluzec NJ
    Microsc Microanal; 2009 Apr; 15(2):93-8. PubMed ID: 19284890
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Compton scattering artifacts in electron excited X-ray spectra measured with a silicon drift detector.
    Ritchie NW; Newbury DE; Lindstrom AP
    Microsc Microanal; 2011 Dec; 17(6):903-10. PubMed ID: 22067917
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A fast energy-dispersive multi-element detector for X-ray absorption spectroscopy.
    Welter E; Hansen K; Reckleben C; Diehl I
    J Synchrotron Radiat; 2009 Mar; 16(Pt 2):293-8. PubMed ID: 19240342
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Si nanoparticle-decorated Si nanowire networks for Li-ion battery anodes.
    Hu L; Wu H; Hong SS; Cui L; McDonough JR; Bohy S; Cui Y
    Chem Commun (Camb); 2011 Jan; 47(1):367-9. PubMed ID: 20830432
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous emission and fluorescent scanning of the thyroid.
    Patton JA; Brill AB
    J Nucl Med; 1978 May; 19(5):464-9. PubMed ID: 641567
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical and Experimental X-Ray Peak/Background Ratios and Implications for Energy-Dispersive Spectrometry in the Next-Generation Analytical Electron Microscope.
    Zaluzec NJ
    Microsc Microanal; 2016 Feb; 22(1):230-6. PubMed ID: 26794345
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving the performance of high-resolution X-ray spectrometers with position-sensitive pixel detectors.
    Huotari S; Vankó G; Albergamo F; Ponchut C; Graafsma H; Henriquet C; Verbeni R; Monaco G
    J Synchrotron Radiat; 2005 Jul; 12(Pt 4):467-72. PubMed ID: 15968123
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectrometer for lanthanides' K x-ray fluorescence.
    Sakurai K; Mizusawa M; Terada Y
    Rev Sci Instrum; 2007 Jun; 78(6):066108. PubMed ID: 17614652
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The interaction between atoms of Au and Cu with clean Si(111) surface: a study combining synchrotron radiation grazing incidence X-ray fluorescence analysis and theoretical calculations.
    de Carvalho HW; Batista AP; Ramalho TC; Pérez CA; Gobbi AL
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 Sep; 74(1):292-6. PubMed ID: 19592296
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The new X-ray mapping: X-ray spectrum imaging above 100 kHz output count rate with the silicon drift detector.
    Newbury DE
    Microsc Microanal; 2006 Feb; 12(1):26-35. PubMed ID: 17481339
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a high-efficiency high-resolution particle-induced x-ray emission system for chemical state analysis of environmental samples.
    Hasegawa J; Tada T; Oguri Y; Hayashi M; Toriyama T; Kawabata T; Masai K
    Rev Sci Instrum; 2007 Jul; 78(7):073105. PubMed ID: 17672753
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of Si nano-columns in 2-D and 3-D on cellular behaviour: nanotopography-induced CaP deposition from differentiating mesenchymal stem cells.
    Guvendik S; Trabzon L; Ramazanoglu M
    J Nanosci Nanotechnol; 2011 Oct; 11(10):8896-902. PubMed ID: 22400277
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The analysis of leiomyomata uteri and uterus using energy-dispersive X-ray fluorescence spectrometry.
    Ekinci N; Ingeç M
    Appl Radiat Isot; 2008 Aug; 66(8):1117-22. PubMed ID: 18291662
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of measurement conditions of an energy dispersive X-ray fluorescence spectrometer with high-energy polarized beam excitation for analysis of aerosol filters.
    Spolnik Z; Belikov K; Van Meel K; Adriaenssens E; De Roeck F; Van Grieken R
    Appl Spectrosc; 2005 Dec; 59(12):1465-9. PubMed ID: 16390584
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Covalently attached saccharides on silicon surfaces.
    de Smet LC; Stork GA; Hurenkamp GH; Sun QY; Topal H; Vronen PJ; Sieval AB; Wright A; Visser GM; Zuilhof H; Sudhölter EJ
    J Am Chem Soc; 2003 Nov; 125(46):13916-7. PubMed ID: 14611201
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Directed organic grafting on locally doped silicon substrates.
    Charlier J; Baraton L; Bureau C; Palacin S
    Chemphyschem; 2005 Jan; 6(1):70-4. PubMed ID: 15688648
    [No Abstract]   [Full Text] [Related]  

  • 17. [Energy dispersive X-ray fluorescence analysis based on radioisotope sources].
    Taguchi T; Hara R
    Radioisotopes; 1983 Jul; 32(7):344-51. PubMed ID: 6361918
    [No Abstract]   [Full Text] [Related]  

  • 18. Quantitative analysis of X-ray absorption spectra using a 2D map representation.
    Choi HC; Lee S; Lee KK; Noda I; Park C; Kwon CH; Jung YM
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Apr; 69(4):1110-3. PubMed ID: 17693131
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of lithium in mineral water samples by X-ray fluorescence spectrometry.
    Zawisza B; Sitko R
    Appl Spectrosc; 2011 Oct; 65(10):1218-21. PubMed ID: 21986084
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The heavy analogue of CpLi: lithium 1,2-disila-3-germacyclopentadienide, a 6pi-electron aromatic system.
    Lee VY; Kato R; Ichinohe M; Sekiguchi A
    J Am Chem Soc; 2005 Sep; 127(38):13142-3. PubMed ID: 16173731
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.