BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 19285002)

  • 1. O-GlcNAc inhibits interaction between Sp1 and Elf-1 transcription factors.
    Lim K; Chang HI
    Biochem Biophys Res Commun; 2009 Mar; 380(3):569-74. PubMed ID: 19285002
    [TBL] [Abstract][Full Text] [Related]  

  • 2. O-GlcNAc modification of Sp1 inhibits the functional interaction between Sp1 and Oct1.
    Lim K; Chang HI
    FEBS Lett; 2009 Feb; 583(3):512-20. PubMed ID: 19070619
    [TBL] [Abstract][Full Text] [Related]  

  • 3. O-GlcNAc inhibits interaction between Sp1 and sterol regulatory element binding protein 2.
    Lim K; Chang HI
    Biochem Biophys Res Commun; 2010 Mar; 393(2):314-8. PubMed ID: 20138838
    [TBL] [Abstract][Full Text] [Related]  

  • 4. O-GlcNAcylation of Sp1 interrupts Sp1 interaction with NF-Y.
    Lim K; Chang HI
    Biochem Biophys Res Commun; 2009 May; 382(3):593-7. PubMed ID: 19302979
    [TBL] [Abstract][Full Text] [Related]  

  • 5. O-linkage of N-acetylglucosamine to Sp1 activation domain inhibits its transcriptional capability.
    Yang X; Su K; Roos MD; Chang Q; Paterson AJ; Kudlow JE
    Proc Natl Acad Sci U S A; 2001 Jun; 98(12):6611-6. PubMed ID: 11371615
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of O-linked beta-N-acetylglucosamine modification in the subcellular distribution of alpha4 phosphoprotein and Sp1 in rat lymphoma cells.
    Dauphinee SM; Ma M; Too CK
    J Cell Biochem; 2005 Oct; 96(3):579-88. PubMed ID: 16052526
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elevated O-linked N-acetylglucosamine correlated with reduced Sp1 cooperative DNA binding with its collaborating factors in vivo.
    Lim K; Chang HI
    Biosci Biotechnol Biochem; 2010; 74(8):1668-72. PubMed ID: 20699577
    [TBL] [Abstract][Full Text] [Related]  

  • 8. O-linked N-acetylglucosamine suppresses thermal aggregation of Sp1.
    Lim KH; Chang HI
    FEBS Lett; 2006 Aug; 580(19):4645-52. PubMed ID: 16879824
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcription of the Tollip gene is elevated in intestinal epithelial cells through impaired O-GlcNAcylation-dependent nuclear translocation of the negative regulator Elf-1.
    Sugi Y; Takahashi K; Nakano K; Hosono A; Kaminogawa S
    Biochem Biophys Res Commun; 2011 Sep; 412(4):704-9. PubMed ID: 21867680
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stress-induced expression of the p75 neurotrophin receptor is regulated by O-GlcNAcylation of the Sp1 transcription factor.
    Kommaddi RP; Dickson KM; Barker PA
    J Neurochem; 2011 Feb; 116(3):396-405. PubMed ID: 21105874
    [TBL] [Abstract][Full Text] [Related]  

  • 11. O-glycosylation of Sp1 and transcriptional regulation of the calmodulin gene by insulin and glucagon.
    Majumdar G; Harmon A; Candelaria R; Martinez-Hernandez A; Raghow R; Solomon SS
    Am J Physiol Endocrinol Metab; 2003 Sep; 285(3):E584-91. PubMed ID: 12900380
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A critical role of Sp1 transcription factor in regulating gene expression in response to insulin and other hormones.
    Solomon SS; Majumdar G; Martinez-Hernandez A; Raghow R
    Life Sci; 2008 Aug; 83(9-10):305-12. PubMed ID: 18664368
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activation of PPARgamma negatively regulates O-GlcNAcylation of Sp1.
    Chung SS; Kim JH; Park HS; Choi HH; Lee KW; Cho YM; Lee HK; Park KS
    Biochem Biophys Res Commun; 2008 Aug; 372(4):713-8. PubMed ID: 18513490
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sp1-dependent regulation of Myeloid Elf-1 like factor in human epithelial cells.
    Koga T; Suico MA; Nakamura H; Taura M; Lu Z; Shuto T; Okiyoneda T; Kai H
    FEBS Lett; 2005 May; 579(13):2811-6. PubMed ID: 15907486
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Post-translational modification by O-GlcNAc: another way to change protein function.
    Kudlow JE
    J Cell Biochem; 2006 Aug; 98(5):1062-75. PubMed ID: 16598783
    [TBL] [Abstract][Full Text] [Related]  

  • 16. O-GlcNAc modification of transcription factors, glucose sensing and glucotoxicity.
    Issad T; Kuo M
    Trends Endocrinol Metab; 2008 Dec; 19(10):380-9. PubMed ID: 18929495
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High glucose and insulin promote O-GlcNAc modification of proteins, including alpha-tubulin.
    Walgren JL; Vincent TS; Schey KL; Buse MG
    Am J Physiol Endocrinol Metab; 2003 Feb; 284(2):E424-34. PubMed ID: 12397027
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Global identification of O-GlcNAc-modified proteins.
    Nandi A; Sprung R; Barma DK; Zhao Y; Kim SC; Falck JR; Zhao Y
    Anal Chem; 2006 Jan; 78(2):452-8. PubMed ID: 16408927
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methylglyoxal modification of mSin3A links glycolysis to angiopoietin-2 transcription.
    Yao D; Taguchi T; Matsumura T; Pestell R; Edelstein D; Giardino I; Suske G; Ahmed N; Thornalley PJ; Sarthy VP; Hammes HP; Brownlee M
    Cell; 2006 Jan; 124(2):275-86. PubMed ID: 16413606
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modification of topoisomerase I activity by glucose and by O-GlcNAcylation of the enzyme protein.
    Noach N; Segev Y; Levi I; Segal S; Priel E
    Glycobiology; 2007 Dec; 17(12):1357-64. PubMed ID: 17932134
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.