BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 19285020)

  • 1. Cadmium interferes with the degradation of ATF5 via a post-ubiquitination step of the proteasome degradation pathway.
    Uekusa H; Namimatsu M; Hiwatashi Y; Akimoto T; Nishida T; Takahashi S; Takahashi Y
    Biochem Biophys Res Commun; 2009 Mar; 380(3):673-8. PubMed ID: 19285020
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cdc34-mediated degradation of ATF5 is blocked by cisplatin.
    Wei Y; Jiang J; Liu D; Zhou J; Chen X; Zhang S; Zong H; Yun X; Gu J
    J Biol Chem; 2008 Jul; 283(27):18773-81. PubMed ID: 18458088
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 20S proteasome and accumulation of oxidized and ubiquitinated proteins in maize leaves subjected to cadmium stress.
    Pena LB; Pasquini LA; Tomaro ML; Gallego SM
    Phytochemistry; 2007 Apr; 68(8):1139-46. PubMed ID: 17399749
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CDK11p58 represses vitamin D receptor-mediated transcriptional activation through promoting its ubiquitin-proteasome degradation.
    Chi Y; Hong Y; Zong H; Wang Y; Zou W; Yang J; Kong X; Yun X; Gu J
    Biochem Biophys Res Commun; 2009 Aug; 386(3):493-8. PubMed ID: 19538938
    [TBL] [Abstract][Full Text] [Related]  

  • 5. N-terminal hydrophobic amino acids of activating transcription factor 5 (ATF5) protein confer interleukin 1β (IL-1β)-induced stabilization.
    Abe T; Kojima M; Akanuma S; Iwashita H; Yamazaki T; Okuyama R; Ichikawa K; Umemura M; Nakano H; Takahashi S; Takahashi Y
    J Biol Chem; 2014 Feb; 289(7):3888-900. PubMed ID: 24379400
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PIASy controls ubiquitination-dependent proteasomal degradation of Ets-1.
    Nishida T; Terashima M; Fukami K; Yamada Y
    Biochem J; 2007 Aug; 405(3):481-8. PubMed ID: 17456046
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The 26S proteasome system degrades the ERM transcription factor and regulates its transcription-enhancing activity.
    Baert JL; Beaudoin C; Monte D; Degerny C; Mauen S; de Launoit Y
    Oncogene; 2007 Jan; 26(3):415-24. PubMed ID: 16832340
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ubiquitin-dependent and -independent proteasomal degradation of hepatitis B virus X protein.
    Kim JH; Sohn SY; Benedict Yen TS; Ahn BY
    Biochem Biophys Res Commun; 2008 Feb; 366(4):1036-42. PubMed ID: 18155658
    [TBL] [Abstract][Full Text] [Related]  

  • 9. N-Terminal ubiquitination of extracellular signal-regulated kinase 3 and p21 directs their degradation by the proteasome.
    Coulombe P; Rodier G; Bonneil E; Thibault P; Meloche S
    Mol Cell Biol; 2004 Jul; 24(14):6140-50. PubMed ID: 15226418
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fasting induced up-regulation of activating transcription factor 5 in mouse liver.
    Shimizu YI; Morita M; Ohmi A; Aoyagi S; Ebihara H; Tonaki D; Horino Y; Iijima M; Hirose H; Takahashi S; Takahashi Y
    Life Sci; 2009 Jun; 84(25-26):894-902. PubMed ID: 19376136
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nucleophosmin (NPM1/B23) interacts with activating transcription factor 5 (ATF5) protein and promotes proteasome- and caspase-dependent ATF5 degradation in hepatocellular carcinoma cells.
    Liu X; Liu D; Qian D; Dai J; An Y; Jiang S; Stanley B; Yang J; Wang B; Liu X; Liu DX
    J Biol Chem; 2012 Jun; 287(23):19599-609. PubMed ID: 22528486
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Apoptosis induction by Bid requires unconventional ubiquitination and degradation of its N-terminal fragment.
    Tait SW; de Vries E; Maas C; Keller AM; D'Santos CS; Borst J
    J Cell Biol; 2007 Dec; 179(7):1453-66. PubMed ID: 18166654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ATF5 increases cisplatin-induced apoptosis through up-regulation of cyclin D3 transcription in HeLa cells.
    Wei Y; Jiang J; Sun M; Chen X; Wang H; Gu J
    Biochem Biophys Res Commun; 2006 Jan; 339(2):591-6. PubMed ID: 16300731
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CREB activates proteasomal degradation of DSCR1/RCAN1.
    Seo SR; Chung KC
    FEBS Lett; 2008 Jun; 582(13):1889-93. PubMed ID: 18485898
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel site for ubiquitination: the N-terminal residue, and not internal lysines of MyoD, is essential for conjugation and degradation of the protein.
    Breitschopf K; Bengal E; Ziv T; Admon A; Ciechanover A
    EMBO J; 1998 Oct; 17(20):5964-73. PubMed ID: 9774340
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Id-1 induces proteasome-dependent degradation of the HBX protein.
    Ling MT; Chiu YT; Lee TK; Leung SC; Fung MK; Wang X; Wong KF; Wong YC
    J Mol Biol; 2008 Sep; 382(1):34-43. PubMed ID: 18674781
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ubiquitin-dependent degradation of adenovirus E1A protein is inhibited by BS69.
    Isobe T; Uchida C; Hattori T; Kitagawa K; Oda T; Kitagawa M
    Biochem Biophys Res Commun; 2006 Jan; 339(1):367-74. PubMed ID: 16300738
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amino acid limitation induces expression of ATF5 mRNA at the post-transcriptional level.
    Watatani Y; Kimura N; Shimizu YI; Akiyama I; Tonaki D; Hirose H; Takahashi S; Takahashi Y
    Life Sci; 2007 Feb; 80(9):879-85. PubMed ID: 17140605
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alternative UPS drug targets upstream the 26S proteasome.
    Hjerpe R; Rodríguez MS
    Int J Biochem Cell Biol; 2008; 40(6-7):1126-40. PubMed ID: 18203645
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ubiquitin dependent and independent protein degradation in the regulation of cellular polyamines.
    Kahana C
    Amino Acids; 2007 Aug; 33(2):225-30. PubMed ID: 17404802
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.