BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 19285035)

  • 1. Label-free biochemical imaging of heart tissue with high-speed spontaneous Raman microscopy.
    Ogawa M; Harada Y; Yamaoka Y; Fujita K; Yaku H; Takamatsu T
    Biochem Biophys Res Commun; 2009 May; 382(2):370-4. PubMed ID: 19285035
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Confocal Raman microspectral imaging (CRMI) of murine stem cell colonies.
    Zuser E; Chernenko T; Newmark J; Miljković M; Diem M
    Analyst; 2010 Dec; 135(12):3030-3. PubMed ID: 20944846
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ mapping of nitrifiers and anammox bacteria in microbial aggregates by means of confocal resonance Raman microscopy.
    Pätzold R; Keuntje M; Theophile K; Müller J; Mielcarek E; Ngezahayo A; Anders-von Ahlften A
    J Microbiol Methods; 2008 Mar; 72(3):241-8. PubMed ID: 18255179
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Label-free evaluation of myocardial infarction and its repair by spontaneous Raman spectroscopy.
    Nishiki-Muranishi N; Harada Y; Minamikawa T; Yamaoka Y; Dai P; Yaku H; Takamatsu T
    Anal Chem; 2014 Jul; 86(14):6903-10. PubMed ID: 24914734
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Defining a strategy for chemical imaging of industrial pharmaceutical samples on Raman line-mapping and global illumination instruments.
    Sasić S; Clark DA
    Appl Spectrosc; 2006 May; 60(5):494-502. PubMed ID: 16756700
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Confocal Raman microspectroscopic study of human breast morphological elements].
    Yu G; Xu XX; Lu SH; Zhang CZ; Song ZF; Zhang CP
    Guang Pu Xue Yu Guang Pu Fen Xi; 2006 May; 26(5):869-73. PubMed ID: 16883857
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Model-based biological Raman spectral imaging.
    Shafer-Peltier KE; Haka AS; Motz JT; Fitzmaurice M; Dasari RR; Feld MS
    J Cell Biochem Suppl; 2002; 39():125-37. PubMed ID: 12552612
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Resonance Raman imaging of the NADPH oxidase subunit cytochrome b558 in single neutrophilic granulocytes.
    van Manen HJ; Uzunbajakava N; van Bruggen R; Roos D; Otto C
    J Am Chem Soc; 2003 Oct; 125(40):12112-3. PubMed ID: 14518995
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo optical monitoring of tissue pathologies and diseases with vibrational contrast.
    Bégin S; Bélanger E; Laffray S; Vallée R; Côté D
    J Biophotonics; 2009 Nov; 2(11):632-42. PubMed ID: 19847801
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Confocal spectral imaging in tissue with contrast provided by Raman vibrational signatures.
    Whitley A; Adar F
    Cytometry A; 2006 Aug; 69(8):880-7. PubMed ID: 16969801
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Raman microscopy of freeze-dried mouse eyeball-slice in conjunction with the "in vivo cryotechnique".
    Terada N; Ohno N; Saitoh S; Fujii Y; Ohguro H; Ohno S
    Microsc Res Tech; 2007 Jul; 70(7):634-9. PubMed ID: 17393480
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Raman imaging of cell wall polymers in Arabidopsis thaliana.
    Schmidt M; Schwartzberg AM; Carroll A; Chaibang A; Adams PD; Schuck PJ
    Biochem Biophys Res Commun; 2010 May; 395(4):521-3. PubMed ID: 20394731
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of "in vivo cryotechnique" to detect erythrocyte oxygen saturation in frozen mouse tissues with confocal Raman cryomicroscopy.
    Terada N; Ohno N; Saitoh S; Ohno S
    J Struct Biol; 2008 Aug; 163(2):147-54. PubMed ID: 18571433
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The targeting of cyclophilin D by RNAi as a novel cardioprotective therapy: evidence from two-photon imaging.
    Kato M; Akao M; Matsumoto-Ida M; Makiyama T; Iguchi M; Takeda T; Shimizu S; Kita T
    Cardiovasc Res; 2009 Jul; 83(2):335-44. PubMed ID: 19299432
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of the cytochrome distribution via linear and nonlinear Raman spectroscopy.
    Walter A; Erdmann S; Bocklitz T; Jung EM; Vogler N; Akimov D; Dietzek B; Rösch P; Kothe E; Popp J
    Analyst; 2010 May; 135(5):908-17. PubMed ID: 20419238
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative analysis of the redox states of cytochromes in a living L929 (NCTC) cell by resonance Raman microspectroscopy.
    Kakita M; Okuno M; Hamaguchi HO
    J Biophotonics; 2013 Mar; 6(3):256-9. PubMed ID: 22573518
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical imaging of articular cartilage sections with Raman mapping, employing uni- and multi-variate methods for data analysis.
    Bonifacio A; Beleites C; Vittur F; Marsich E; Semeraro S; Paoletti S; Sergo V
    Analyst; 2010 Dec; 135(12):3193-204. PubMed ID: 20967391
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dual-polarization Raman spectral imaging to extract overlapping molecular fingerprints of living cells.
    Chiu LD; Palonpon AF; Smith NI; Kawata S; Sodeoka M; Fujita K
    J Biophotonics; 2015 Jul; 8(7):546-54. PubMed ID: 24733812
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of type 2A secretory phospholipase A2 reduces death of cardiomyocytes in acute myocardial infarction.
    van Dijk A; Krijnen PA; Vermond RA; Pronk A; Spreeuwenberg M; Visser FC; Berney R; Paulus WJ; Hack CE; van Milligen FJ; Niessen HW
    Apoptosis; 2009 Jun; 14(6):753-63. PubMed ID: 19421861
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identifying the spatial distribution of vitamin E, pulmonary surfactant and membrane lipids in cells and tissue by confocal Raman microscopy.
    Beattie JR; Schock BC
    Methods Mol Biol; 2009; 579():513-35. PubMed ID: 19763493
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.