BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 19285035)

  • 41. Cine cardiac imaging using black-blood steady-state free precession (BB-SSFP) at 3T.
    Basha TA; Ibrahim el-SH; Weiss RG; Osman NF
    J Magn Reson Imaging; 2009 Jul; 30(1):94-103. PubMed ID: 19557851
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Multiple defects in intracellular calcium cycling in whole failing rat heart.
    Wasserstrom JA; Sharma R; Kapur S; Kelly JE; Kadish AH; Balke CW; Aistrup GL
    Circ Heart Fail; 2009 May; 2(3):223-32. PubMed ID: 19808344
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Histological classification of atherosclerotic arteries using high-speed confocal Raman microscopy with machine learning.
    Xing J; Lee DR; Kim JW; Yoo H
    J Biophotonics; 2023 Feb; 16(2):e202200243. PubMed ID: 36238991
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Label-free highly sensitive detection of proteins in aqueous solutions using surface-enhanced Raman scattering.
    Han XX; Huang GG; Zhao B; Ozaki Y
    Anal Chem; 2009 May; 81(9):3329-33. PubMed ID: 19326907
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Raman microspectroscopic mapping studies of human bronchial tissue.
    Koljenović S; Bakker Schut TC; van Meerbeeck JP; Maat AP; Burgers SA; Zondervan PE; Kros JM; Puppels GJ
    J Biomed Opt; 2004; 9(6):1187-97. PubMed ID: 15568939
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Surface-enhanced Raman scattering of rat tissues.
    Aydin O; Kahraman M; Kiliç E; Culha M
    Appl Spectrosc; 2009 Jun; 63(6):662-8. PubMed ID: 19531293
    [TBL] [Abstract][Full Text] [Related]  

  • 47. 3-(R)-[3-(2-methoxyphenylthio-2-(S)-methylpropyl]amino-3,4-dihydro-2H-1,5-benzoxathiepine bromhydrate (F 15845) prevents ischemia-induced heart remodeling by reduction of the intracellular Na+ overload.
    Vié B; Sablayrolles S; Létienne R; Vacher B; Darmellah A; Bernard M; Feuvray D; Le Grand B
    J Pharmacol Exp Ther; 2009 Sep; 330(3):696-703. PubMed ID: 19515969
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Viable vascularized autologous patch for transmural myocardial reconstruction.
    Tudorache I; Kostin S; Meyer T; Teebken O; Bara C; Hilfiker A; Haverich A; Cebotari S
    Eur J Cardiothorac Surg; 2009 Aug; 36(2):306-11; discussion 311. PubMed ID: 19369090
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Nanoscale aggregation of cellular beta2-adrenergic receptors measured by plasmonic interactions of functionalized nanoparticles.
    Kennedy DC; Tay LL; Lyn RK; Rouleau Y; Hulse J; Pezacki JP
    ACS Nano; 2009 Aug; 3(8):2329-39. PubMed ID: 19702324
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Label-free live-cell imaging with confocal Raman microscopy.
    Klein K; Gigler AM; Aschenbrenner T; Monetti R; Bunk W; Jamitzky F; Morfill G; Stark RW; Schlegel J
    Biophys J; 2012 Jan; 102(2):360-8. PubMed ID: 22339873
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Redox State of Cytochromes in Frozen Yeast Cells Probed by Resonance Raman Spectroscopy.
    Okotrub KA; Surovtsev NV
    Biophys J; 2015 Dec; 109(11):2227-34. PubMed ID: 26636934
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Label-free molecular imaging of immunological synapses between dendritic and T cells by Raman micro-spectroscopy.
    Zoladek AB; Johal RK; Garcia-Nieto S; Pascut F; Shakesheff KM; Ghaemmaghami AM; Notingher I
    Analyst; 2010 Dec; 135(12):3205-12. PubMed ID: 20953516
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Confocal Raman microscopy in life sciences.
    Gomes da Costa S; Richter A; Schmidt U; Breuninger S; Hollricher O
    Morphologie; 2019 Mar; 103(341):11-16. PubMed ID: 30579682
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Nonlinear spectral imaging of human hypertrophic scar based on two-photon excited fluorescence and second-harmonic generation.
    Chen G; Chen J; Zhuo S; Xiong S; Zeng H; Jiang X; Chen R; Xie S
    Br J Dermatol; 2009 Jul; 161(1):48-55. PubMed ID: 19309369
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Confocal Raman microscopy on single living young and old erythrocytes.
    Kang LL; Huang YX; Liu WJ; Zheng XJ; Wu ZJ; Luo M
    Biopolymers; 2008 Nov; 89(11):951-9. PubMed ID: 18615496
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Confocal microscopy of cardiac myocytes.
    Price RL; Haley ST; Bullard T; Davis J; Borg TK; Terracio L
    Methods Mol Biol; 2014; 1075():185-99. PubMed ID: 24052352
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Rapid and accurate peripheral nerve imaging by multipoint Raman spectroscopy.
    Kumamoto Y; Harada Y; Tanaka H; Takamatsu T
    Sci Rep; 2017 Apr; 7(1):845. PubMed ID: 28405007
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The Recent Advances in Raman Microscopy and Imaging Techniques for Biosensors.
    Rzhevskii A
    Biosensors (Basel); 2019 Feb; 9(1):. PubMed ID: 30759840
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A microelectrode-based sensor for label-free in vitro detection of ischemic effects on cardiomyocytes.
    Krinke D; Jahnke HG; Pänke O; Robitzki AA
    Biosens Bioelectron; 2009 May; 24(9):2798-803. PubMed ID: 19285854
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Raman microscopy as a novel tool to detect endothelial dysfunction.
    Baranska M; Kaczor A; Malek K; Jaworska A; Majzner K; Staniszewska-Slezak E; Pacia MZ; Zajac G; Dybas J; Wiercigroch E
    Pharmacol Rep; 2015 Aug; 67(4):736-43. PubMed ID: 26321275
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.