BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 19285078)

  • 1. Plant Rho-type (Rop) GTPase-dependent activation of receptor-like cytoplasmic kinases in vitro.
    Dorjgotov D; Jurca ME; Fodor-Dunai C; Szucs A; Otvös K; Klement E; Bíró J; Fehér A
    FEBS Lett; 2009 Apr; 583(7):1175-82. PubMed ID: 19285078
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A cysteine-rich receptor-like kinase NCRK and a pathogen-induced protein kinase RBK1 are Rop GTPase interactors.
    Molendijk AJ; Ruperti B; Singh MK; Dovzhenko A; Ditengou FA; Milia M; Westphal L; Rosahl S; Soellick TR; Uhrig J; Weingarten L; Huber M; Palme K
    Plant J; 2008 Mar; 53(6):909-23. PubMed ID: 18088316
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The phosphomimetic mutation of an evolutionarily conserved serine residue affects the signaling properties of Rho of plants (ROPs).
    Fodor-Dunai C; Fricke I; Potocký M; Dorjgotov D; Domoki M; Jurca ME; Otvös K; Zárský V; Berken A; Fehér A
    Plant J; 2011 May; 66(4):669-79. PubMed ID: 21309864
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new family of RhoGEFs activates the Rop molecular switch in plants.
    Berken A; Thomas C; Wittinghofer A
    Nature; 2005 Aug; 436(7054):1176-80. PubMed ID: 15980860
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The crystal structure of Arabidopsis thaliana RAC7/ROP9: the first RAS superfamily GTPase from the plant kingdom.
    Sørmo CG; Leiros I; Brembu T; Winge P; Os V; Bones AM
    Phytochemistry; 2006 Nov; 67(21):2332-40. PubMed ID: 17005216
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In silico identification and experimental validation of amino acid motifs required for the Rho-of-plants GTPase-mediated activation of receptor-like cytoplasmic kinases.
    Lajkó DB; Valkai I; Domoki M; Ménesi D; Ferenc G; Ayaydin F; Fehér A
    Plant Cell Rep; 2018 Apr; 37(4):627-639. PubMed ID: 29340786
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RopGAP4-dependent Rop GTPase rheostat control of Arabidopsis oxygen deprivation tolerance.
    Baxter-Burrell A; Yang Z; Springer PS; Bailey-Serres J
    Science; 2002 Jun; 296(5575):2026-8. PubMed ID: 12065837
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ROPs in the spotlight of plant signal transduction.
    Berken A
    Cell Mol Life Sci; 2006 Nov; 63(21):2446-59. PubMed ID: 16932855
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reconstruction of ROP GTPase Domains on the Plasma Membrane in Tobacco Leaves.
    Oda Y; Nagashima Y; Fukuda H
    Methods Mol Biol; 2018; 1821():393-399. PubMed ID: 30062426
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D structure of a binary ROP-PRONE complex: the final intermediate for a complete set of molecular snapshots of the RopGEF reaction.
    Thomas C; Fricke I; Weyand M; Berken A
    Biol Chem; 2009; 390(5-6):427-35. PubMed ID: 19335195
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Circadian rhythms: rho-related signals in time-specific light perception.
    Kolmos E; Davis SJ
    Curr Biol; 2007 Sep; 17(18):R808-10. PubMed ID: 17878051
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A RHOse by any other name: a comparative analysis of animal and plant Rho GTPases.
    Brembu T; Winge P; Bones AM; Yang Z
    Cell Res; 2006 May; 16(5):435-45. PubMed ID: 16699539
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Signals fly when kinases meet Rho-of-plants (ROP) small G-proteins.
    Fehér A; Lajkó DB
    Plant Sci; 2015 Aug; 237():93-107. PubMed ID: 26089155
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arabidopsis interdigitating cell growth requires two antagonistic pathways with opposing action on cell morphogenesis.
    Fu Y; Gu Y; Zheng Z; Wasteneys G; Yang Z
    Cell; 2005 Mar; 120(5):687-700. PubMed ID: 15766531
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Affinity-based assay of Rho guanosine triphosphatase activation.
    Stofega M; DerMardirossian C; Bokoch GM
    Methods Mol Biol; 2006; 332():269-79. PubMed ID: 16878699
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Initiation of cell wall pattern by a Rho- and microtubule-driven symmetry breaking.
    Oda Y; Fukuda H
    Science; 2012 Sep; 337(6100):1333-6. PubMed ID: 22984069
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activation status-coupled transient S acylation determines membrane partitioning of a plant Rho-related GTPase.
    Sorek N; Poraty L; Sternberg H; Bar E; Lewinsohn E; Yalovsky S
    Mol Cell Biol; 2007 Mar; 27(6):2144-54. PubMed ID: 17242203
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Arabidopsis Rop2 GTPase is a positive regulator of both root hair initiation and tip growth.
    Jones MA; Shen JJ; Fu Y; Li H; Yang Z; Grierson CS
    Plant Cell; 2002 Apr; 14(4):763-76. PubMed ID: 11971133
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Small interfering RNAs as a tool to assign Rho GTPase exchange-factor function in vivo.
    Gampel A; Mellor H
    Biochem J; 2002 Sep; 366(Pt 2):393-8. PubMed ID: 12113653
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NADPH oxidase-dependent reactive oxygen species formation required for root hair growth depends on ROP GTPase.
    Jones MA; Raymond MJ; Yang Z; Smirnoff N
    J Exp Bot; 2007; 58(6):1261-70. PubMed ID: 17301029
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.