These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 19285333)

  • 1. Using river distances in the space/time estimation of dissolved oxygen along two impaired river networks in New Jersey.
    Money E; Carter GP; Serre ML
    Water Res; 2009 Apr; 43(7):1948-58. PubMed ID: 19285333
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modern space/time geostatistics using river distances: data integration of turbidity and E. coli measurements to assess fecal contamination along the Raritan River in New Jersey.
    Money ES; Carter GP; Serre ML
    Environ Sci Technol; 2009 May; 43(10):3736-42. PubMed ID: 19544881
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bayesian Maximum Entropy space/time estimation of surface water chloride in Maryland using river distances.
    Jat P; Serre ML
    Environ Pollut; 2016 Dec; 219():1148-1155. PubMed ID: 27616646
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatiotemporal nonattainment assessment of surface water tetrachloroethylene in New Jersey.
    Akita Y; Carter G; Serre ML
    J Environ Qual; 2007; 36(2):508-20. PubMed ID: 17332255
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimation of daily dissolved oxygen concentration for river water quality using conventional regression analysis, multivariate adaptive regression splines, and TreeNet techniques.
    Nacar S; Mete B; Bayram A
    Environ Monit Assess; 2020 Nov; 192(12):752. PubMed ID: 33159587
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatio-temporal statistical models for river monitoring networks.
    Clement L; Thas O; Vanrolleghem PA; Ottoy JP
    Water Sci Technol; 2006; 53(1):9-15. PubMed ID: 16532730
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The MARINA model (Model to Assess River Inputs of Nutrients to seAs): Model description and results for China.
    Strokal M; Kroeze C; Wang M; Bai Z; Ma L
    Sci Total Environ; 2016 Aug; 562():869-888. PubMed ID: 27115624
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monitoring spatial and temporal variation of dissolved oxygen and water temperature in the Savannah River using a sensor network.
    Post CJ; Cope MP; Gerard PD; Masto NM; Vine JR; Stiglitz RY; Hallstrom JO; Newman JC; Mikhailova EA
    Environ Monit Assess; 2018 Apr; 190(5):272. PubMed ID: 29637320
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A parsimonious dynamic model for river water quality assessment.
    Mannina G; Viviani G
    Water Sci Technol; 2010; 61(3):607-18. PubMed ID: 20150696
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Northern Rivers Ecosystem Initiative: nutrients and dissolved oxygen - issues and impacts.
    Chambers PA; Culp JM; Glozier NE; Cash KJ; Wrona FJ; Noton L
    Environ Monit Assess; 2006 Feb; 113(1-3):117-41. PubMed ID: 16514484
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modelling in-stream temperature and dissolved oxygen at sub-daily time steps: an application to the River Kennet, UK.
    Williams RJ; Boorman DB
    Sci Total Environ; 2012 Apr; 423():104-10. PubMed ID: 22401790
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimal river monitoring network using optimal partition analysis: a case study of Hun River, Northeast China.
    Wang H; Liu C; Rong L; Wang X; Sun L; Luo Q; Wu H
    Environ Technol; 2019 Apr; 40(11):1359-1365. PubMed ID: 29283322
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of metal exposure, ecological status and required water quality monitoring strategies in small- to medium-size temperate rivers.
    Marijić VF; Perić MS; Kepčija RM; Dragun Z; Kovarik I; Gulin V; Erk M
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2016; 51(4):309-17. PubMed ID: 26745644
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A parameter identifiability and estimation study in Yesilirmak River.
    Berber R; Yuceer M; Karadurmus E
    Water Sci Technol; 2009; 59(3):515-21. PubMed ID: 19214006
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic reorganization of river basins.
    Willett SD; McCoy SW; Perron JT; Goren L; Chen CY
    Science; 2014 Mar; 343(6175):1248765. PubMed ID: 24604204
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Concepts for river water quality processes for an integrated river basin modelling.
    van Griensven A; Bauwens W
    Water Sci Technol; 2003; 48(3):1-8. PubMed ID: 14518848
    [TBL] [Abstract][Full Text] [Related]  

  • 17. System Dynamics Model for Evaluating Socio-Economic Impacts of Different Water Diversion Quantity from Transboundary River Basins-A Case Study of Xinjiang.
    Shao Z; Wu F; Li F; Zhao Y; Xu X
    Int J Environ Res Public Health; 2020 Dec; 17(23):. PubMed ID: 33291432
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Effects of Cyanobacterial Blooms in Eutrophic Lakes on Water Quality of Connected Rivers].
    Yu ML; Hong GX; Xu H; Zhu GW; Zhu MY; Quan QM
    Huan Jing Ke Xue; 2019 Feb; 40(2):603-613. PubMed ID: 30628322
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of impacts from various hydro-ecological factors on oxygen budgets of a regulated river: a case study of the Petchburi River, western Thailand.
    Sangmek P; Meksumpun C
    Water Sci Technol; 2014; 69(7):1565-72. PubMed ID: 24718352
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ecological study of river Suswa: modeling DO and BOD.
    Bhutiani R; Khanna DR
    Environ Monit Assess; 2007 Feb; 125(1-3):183-95. PubMed ID: 17058010
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.