These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 19285334)

  • 1. Evaluation of optical brightener photodecay characteristics for detection of human fecal contamination.
    Cao Y; Griffith JF; Weisberg SB
    Water Res; 2009 May; 43(8):2273-9. PubMed ID: 19285334
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exposing water samples to ultraviolet light improves fluorometry for detecting human fecal contamination.
    Hartel PG; Hagedorn C; McDonald JL; Fisher JA; Saluta MA; Dickerson JW; Gentit LC; Smith SL; Mantripragada NS; Ritter KJ; Belcher CN
    Water Res; 2007 Aug; 41(16):3629-42. PubMed ID: 17475305
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Suitability of fluorescent whitening compounds (FWCs) as indicators of human faecal contamination from septic tanks in rural catchments.
    Dubber D; Gill LW
    Water Res; 2017 Dec; 127():104-117. PubMed ID: 29035764
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combining targeted sampling and fluorometry to identify human fecal contamination in a freshwater creek.
    Hartel PG; Rodgers K; Moody GL; Hemmings SN; Fisher JA; McDonald JL
    J Water Health; 2008 Mar; 6(1):105-16. PubMed ID: 17998611
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using in situ measurements of optical brighteners for rapid reconnaissance of wastewater inputs to water resources.
    Finegan CR; Hasenmueller EA
    Sci Total Environ; 2023 Jul; 881():163378. PubMed ID: 37044332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identifying human and livestock sources of fecal contamination in Kenya with host-specific Bacteroidales assays.
    Jenkins MW; Tiwari S; Lorente M; Gichaba CM; Wuertz S
    Water Res; 2009 Nov; 43(19):4956-66. PubMed ID: 19692107
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of the host-specificity and prevalence of enterococci surface protein (esp) marker in sewage and its application for sourcing human fecal pollution.
    Ahmed W; Stewart J; Powell D; Gardner T
    J Environ Qual; 2008; 37(4):1583-8. PubMed ID: 18574191
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of microbiological water quality in the Pettaquamscutt River (Rhode Island, USA) using chemical, molecular and culture-dependent methods.
    Atoyan JA; Herron EM; Amador JA
    Mar Pollut Bull; 2011 Jul; 62(7):1577-83. PubMed ID: 21570698
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fecal bacteria in the rivers of the Seine drainage network (France): sources, fate and modelling.
    Servais P; Garcia-Armisen T; George I; Billen G
    Sci Total Environ; 2007 Apr; 375(1-3):152-67. PubMed ID: 17239424
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance of forty-one microbial source tracking methods: a twenty-seven lab evaluation study.
    Boehm AB; Van De Werfhorst LC; Griffith JF; Holden PA; Jay JA; Shanks OC; Wang D; Weisberg SB
    Water Res; 2013 Nov; 47(18):6812-28. PubMed ID: 23880218
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid QPCR-based assay for fecal Bacteroides spp. as a tool for assessing fecal contamination in recreational waters.
    Converse RR; Blackwood AD; Kirs M; Griffith JF; Noble RT
    Water Res; 2009 Nov; 43(19):4828-37. PubMed ID: 19631958
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of photolysis and hydrolysis of atrazine and its first degradation products in the presence of humic acids.
    Prosen H; Zupancic-Kralj L
    Environ Pollut; 2005 Feb; 133(3):517-29. PubMed ID: 15519727
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bacterial source tracking guides management of boat head waste in a coastal resort area.
    Mallin MA; Haltom MI; Song B; Tavares ME; Dellies SP
    J Environ Manage; 2010 Dec; 91(12):2748-53. PubMed ID: 20727664
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of microbial source tracking methods using mixed fecal sources in aqueous test samples.
    Griffith JF; Weisberg SB; McGee CD
    J Water Health; 2003 Dec; 1(4):141-51. PubMed ID: 15382720
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interactions between humic matter and bacteria when disinfecting water with UV light.
    Cantwell RE; Hofmann R; Templeton MR
    J Appl Microbiol; 2008 Jul; 105(1):25-35. PubMed ID: 18397257
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of molecular community analysis methods for discerning fecal sources and human waste.
    Cao Y; Van De Werfhorst LC; Dubinsky EA; Badgley BD; Sadowsky MJ; Andersen GL; Griffith JF; Holden PA
    Water Res; 2013 Nov; 47(18):6862-72. PubMed ID: 23880215
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photolysis of 2,4-dinitrotoluene in various water solutions: effect of dissolved species.
    Mihas O; Kalogerakis N; Psillakis E
    J Hazard Mater; 2007 Jul; 146(3):535-9. PubMed ID: 17521807
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of an integrated community analysis approach for microbial source tracking in a coastal creek.
    Cao Y; Van De Werfhorst LC; Sercu B; Murray JL; Holden PA
    Environ Sci Technol; 2011 Sep; 45(17):7195-201. PubMed ID: 21786742
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid detection of human fecal contamination in estuarine environments by PCR targeting of Bifidobacterium adolescentis.
    King EL; Bachoon DS; Gates KW
    J Microbiol Methods; 2007 Jan; 68(1):76-81. PubMed ID: 16876892
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of the nifH gene marker of Methanobrevibacter smithii for the detection of sewage pollution in environmental waters in Southeast Queensland, Australia.
    Ahmed W; Sidhu JP; Toze S
    Environ Sci Technol; 2012 Jan; 46(1):543-50. PubMed ID: 22070524
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.