These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 19285455)

  • 1. Antibacterial activity of nanocomposites of silver and bacterial or vegetable cellulosic fibers.
    Pinto RJ; Marques PA; Neto CP; Trindade T; Daina S; Sadocco P
    Acta Biomater; 2009 Jul; 5(6):2279-89. PubMed ID: 19285455
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antibacterial activity of nanocomposites of copper and cellulose.
    Pinto RJ; Daina S; Sadocco P; Pascoal Neto C; Trindade T
    Biomed Res Int; 2013; 2013():280512. PubMed ID: 24455681
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli.
    Shahverdi AR; Fakhimi A; Shahverdi HR; Minaian S
    Nanomedicine; 2007 Jun; 3(2):168-71. PubMed ID: 17468052
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanostructured silver vanadate as a promising antibacterial additive to water-based paints.
    Holtz RD; Lima BA; Souza Filho AG; Brocchi M; Alves OL
    Nanomedicine; 2012 Aug; 8(6):935-40. PubMed ID: 22197722
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The biocompatibility and antibacterial properties of waterborne polyurethane-silver nanocomposites.
    Hsu SH; Tseng HJ; Lin YC
    Biomaterials; 2010 Sep; 31(26):6796-808. PubMed ID: 20542329
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Colloidal silver fabrication using the spark discharge system and its antimicrobial effect on Staphylococcus aureus.
    Tien DC; Tseng KH; Liao CY; Tsung TT
    Med Eng Phys; 2008 Oct; 30(8):948-52. PubMed ID: 18069039
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of Ag-NPs impregnated cellulose composite material: its possible role in wound healing and photocatalysis.
    Ali A; Haq IU; Akhtar J; Sher M; Ahmed N; Zia M
    IET Nanobiotechnol; 2017 Jun; 11(4):477-484. PubMed ID: 28530199
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of heat on nanocrystalline silver dressings. Part I: Chemical and biological properties.
    Taylor PL; Ussher AL; Burrell RE
    Biomaterials; 2005 Dec; 26(35):7221-9. PubMed ID: 16005512
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro assessment of antibacterial activity and cytocompatibility of silver-containing PHBV nanofibrous scaffolds for tissue engineering.
    Xing ZC; Chae WP; Baek JY; Choi MJ; Jung Y; Kang IK
    Biomacromolecules; 2010 May; 11(5):1248-53. PubMed ID: 20415469
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of nanofibers with antimicrobial functionality used as filters: protection against bacterial contaminants.
    Lala NL; Ramaseshan R; Bojun L; Sundarrajan S; Barhate RS; Ying-Jun L; Ramakrishna S
    Biotechnol Bioeng; 2007 Aug; 97(6):1357-65. PubMed ID: 17274060
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The antibacterial and antifungal activity of a soda-lime glass containing silver nanoparticles.
    Esteban-Tejeda L; Malpartida F; Esteban-Cubillo A; Pecharromán C; Moya JS
    Nanotechnology; 2009 Feb; 20(8):085103. PubMed ID: 19417439
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation and characterization of silver nanoparticles on silk fibroin/carboxymethylchitosan composite sponge as anti-bacterial wound dressing.
    Pei Z; Sun Q; Sun X; Wang Y; Zhao P
    Biomed Mater Eng; 2015; 26 Suppl 1():S111-8. PubMed ID: 26405868
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antibacterial effects of titanium embedded with silver nanoparticles based on electron-transfer-induced reactive oxygen species.
    Wang G; Jin W; Qasim AM; Gao A; Peng X; Li W; Feng H; Chu PK
    Biomaterials; 2017 Apr; 124():25-34. PubMed ID: 28182874
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antibacterial properties of Ag (or Pt)-containing calcium phosphate coatings formed by micro-arc oxidation.
    Song WH; Ryu HS; Hong SH
    J Biomed Mater Res A; 2009 Jan; 88(1):246-54. PubMed ID: 18286618
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Silver nanoparticle impregnated poly (ɛ-caprolactone) scaffolds: optimization of antimicrobial and noncytotoxic concentrations.
    Madhavan RV; Rosemary MJ; Nandkumar MA; Krishnan KV; Krishnan LK
    Tissue Eng Part A; 2011 Feb; 17(3-4):439-49. PubMed ID: 20807004
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antibacterial effects of silver nanoparticles on the bacterial strains isolated from catheterized urinary tract infection cases.
    Syed MA; Babar S; Bhatti AS; Bokhari H
    J Biomed Nanotechnol; 2009 Apr; 5(2):209-14. PubMed ID: 20055099
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical, tribological, and biocompatibility properties of ZrN-Ag nanocomposite films.
    Kertzman Z; Marchal J; Suarez M; Staia MH; Filip P; Kohli P; Aouadi SM
    J Biomed Mater Res A; 2008 Mar; 84(4):1061-7. PubMed ID: 17685406
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineered biochar from biofuel residue: characterization and its silver removal potential.
    Yao Y; Gao B; Wu F; Zhang C; Yang L
    ACS Appl Mater Interfaces; 2015 May; 7(19):10634-40. PubMed ID: 25923987
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation and characterization of beta-tricalcium phosphate co-doped with monovalent and divalent antibacterial metal ions.
    Matsumoto N; Sato K; Yoshida K; Hashimoto K; Toda Y
    Acta Biomater; 2009 Oct; 5(8):3157-64. PubMed ID: 19435618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biotreatment on cellulose fluff pulp: quaternary ammonium salts finish and grafting with beta-cyclodextrin.
    Ghemati D; Oudia A; Aliouche D; Lamouri S
    Appl Biochem Biotechnol; 2009 Nov; 159(2):532-44. PubMed ID: 19089647
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.