These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 19285562)

  • 1. Food-aversive classical conditioning increases a persistent sodium current in molluscan withdrawal interneurons in a transcription dependent manner.
    Kiss T; Pirger Z; Kemenes G
    Neurobiol Learn Mem; 2009 Jul; 92(1):114-9. PubMed ID: 19285562
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in Membrane and Threshold Potentials of Command Neurons in Terrestrial Snail during Development of a Conditioned Situational Defensive Reflex.
    Muranova LN; Andrianov VV; Bogodvid TK; Deryabina IB; Lazutin SA; Gainutdinov KL
    Bull Exp Biol Med; 2020 Apr; 168(6):709-712. PubMed ID: 32328938
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nitric oxide is necessary for long-term facilitation of synaptic responses and for development of context memory in terrestrial snails.
    Korshunova TA; Balaban PM
    Neuroscience; 2014 Apr; 266():127-35. PubMed ID: 24560987
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neuronal mechanisms of reconsolidation of an associative aversive skill to food in the common snail.
    Kozyrev SA; Nikitin VP
    Neurosci Behav Physiol; 2010 Sep; 40(7):715-22. PubMed ID: 20635219
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro appetitive classical conditioning of the feeding response in the pond snail Lymnaea stagnalis.
    Kemenes G; Staras K; Benjamin PR
    J Neurophysiol; 1997 Nov; 78(5):2351-62. PubMed ID: 9356387
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of 5,7-dihydroxytryptamine on the food-aversive conditioning in the snail Helix lucorum L.
    Balaban PM; Vehovszky A; Maximova OA; Zakharov IS
    Brain Res; 1987 Feb; 404(1-2):201-10. PubMed ID: 3567566
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conditioned defensive reflex in the edible snail (molecular-genetic aspects).
    Grinkevich LN; Nagibneva IN; Lisachev PD
    Neurosci Behav Physiol; 1997; 27(3):216-20. PubMed ID: 9194053
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Excitability increase in withdrawal interneurons after conditioning in snail.
    Gainutdinov KL; Chekmarev LJ; Gainutdinova TH
    Neuroreport; 1998 Feb; 9(3):517-20. PubMed ID: 9512399
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neurochemical mechanisms of consolidation of associative aversive learning to food in the common snail.
    Solntseva SV; Nikitin VP
    Neurosci Behav Physiol; 2009 Sep; 39(7):663-70. PubMed ID: 19629701
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of protein synthesis inhibitors during reactivation of associative memory in the common snail induces reversible and irreversible amnesia.
    Solntseva SV; Nikitin VP; Kozyrev SA; Shevelkin AV; Lagutin AV; Sherstnev VV
    Neurosci Behav Physiol; 2007 Nov; 37(9):921-8. PubMed ID: 17955385
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neurochemical mechanisms of consolidation of associative aversive training to food in the common snail.
    Solntseva SV; Nikitin VP
    Neurosci Behav Physiol; 2009 Nov; 39(9):865-72. PubMed ID: 19830573
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective expression of electrical correlates of differential appetitive classical conditioning in a feeding network.
    Jones N; Kemenes G; Benjamin PR
    J Neurophysiol; 2001 Jan; 85(1):89-97. PubMed ID: 11152709
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Specificity of Mechanisms of Memory Reconsolidation in Snails Trained for Rejection of Two Types of Food.
    Nikitin VP; Kozyrev SA; Solntseva SV
    Bull Exp Biol Med; 2017 Jan; 162(3):295-299. PubMed ID: 28084569
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contribution of persistent sodium current to locomotor pattern generation in neonatal rats.
    Tazerart S; Viemari JC; Darbon P; Vinay L; Brocard F
    J Neurophysiol; 2007 Aug; 98(2):613-28. PubMed ID: 17567773
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A single time-window for protein synthesis-dependent long-term memory formation after one-trial appetitive conditioning.
    Fulton D; Kemenes I; Andrew RJ; Benjamin PR
    Eur J Neurosci; 2005 Mar; 21(5):1347-58. PubMed ID: 15813944
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Induction of latent memory for conditioned food aversion and its transformation into "active" state depend on translation and transcription processes.
    Solntseva SV; Nikitin VP
    Bull Exp Biol Med; 2014 May; 157(1):1-4. PubMed ID: 24906957
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [The molecular cellular mechanisms of the formation of long-term memory in the snail].
    Nikitin VP; Kozyrev SA
    Fiziol Zh Im I M Sechenova; 1995 Aug; 81(8):18-23. PubMed ID: 8775427
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in Amnesia Parameters over Time after Long-Term Memory Disruption with Protein Kinase Mζ Inhibitor.
    Nikitin VP; Solntseva SV; Kozyrev SA
    Bull Exp Biol Med; 2019 Oct; 167(6):711-715. PubMed ID: 31655990
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Critical time-window for NO-cGMP-dependent long-term memory formation after one-trial appetitive conditioning.
    Kemenes I; Kemenes G; Andrew RJ; Benjamin PR; O'Shea M
    J Neurosci; 2002 Feb; 22(4):1414-25. PubMed ID: 11850468
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for a persistent Na-conductance in identified command neurones of the snail, Helix pomatia.
    Kiss T
    Brain Res; 2003 Oct; 989(1):16-25. PubMed ID: 14519507
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.