BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

616 related articles for article (PubMed ID: 19285697)

  • 21. Advances in metabolite identification.
    Wishart DS
    Bioanalysis; 2011 Aug; 3(15):1769-82. PubMed ID: 21827274
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The potential of mass spectrometry for the global profiling of parasite metabolomes.
    Watson DG
    Parasitology; 2010 Aug; 137(9):1409-23. PubMed ID: 20025826
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fourier transform mass spectrometry for metabolome analysis.
    Junot C; Madalinski G; Tabet JC; Ezan E
    Analyst; 2010 Sep; 135(9):2203-19. PubMed ID: 20574587
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Applications of liquid chromatography coupled to mass spectrometry-based metabolomics in clinical chemistry and toxicology: A review.
    Roux A; Lison D; Junot C; Heilier JF
    Clin Biochem; 2011 Jan; 44(1):119-35. PubMed ID: 20800591
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Analytical and statistical approaches to metabolomics research.
    Issaq HJ; Van QN; Waybright TJ; Muschik GM; Veenstra TD
    J Sep Sci; 2009 Jul; 32(13):2183-99. PubMed ID: 19569098
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bioinformatics for mass spectrometry-based metabolomics.
    Enot DP; Haas B; Weinberger KM
    Methods Mol Biol; 2011; 719():351-75. PubMed ID: 21370092
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mass spectrometry-based technologies for high-throughput metabolomics.
    Han J; Datla R; Chan S; Borchers CH
    Bioanalysis; 2009 Dec; 1(9):1665-84. PubMed ID: 21083110
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High-resolution plant metabolomics: from mass spectral features to metabolites and from whole-cell analysis to subcellular metabolite distributions.
    Kueger S; Steinhauser D; Willmitzer L; Giavalisco P
    Plant J; 2012 Apr; 70(1):39-50. PubMed ID: 22449042
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A matter of fat: an introduction to lipidomic profiling methods.
    Roberts LD; McCombie G; Titman CM; Griffin JL
    J Chromatogr B Analyt Technol Biomed Life Sci; 2008 Aug; 871(2):174-81. PubMed ID: 18458005
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mass spectrometry-based metabolomics of yeast.
    Crutchfield CA; Lu W; Melamud E; Rabinowitz JD
    Methods Enzymol; 2010; 470():393-426. PubMed ID: 20946819
    [TBL] [Abstract][Full Text] [Related]  

  • 31. What can metabolomics learn from genomics and proteomics?
    Arita M
    Curr Opin Biotechnol; 2009 Dec; 20(6):610-5. PubMed ID: 19850466
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mass spectrometry for the identification of the discriminating signals from metabolomics: current status and future trends.
    Werner E; Heilier JF; Ducruix C; Ezan E; Junot C; Tabet JC
    J Chromatogr B Analyt Technol Biomed Life Sci; 2008 Aug; 871(2):143-63. PubMed ID: 18672410
    [TBL] [Abstract][Full Text] [Related]  

  • 33. GC-MS libraries for the rapid identification of metabolites in complex biological samples.
    Schauer N; Steinhauser D; Strelkov S; Schomburg D; Allison G; Moritz T; Lundgren K; Roessner-Tunali U; Forbes MG; Willmitzer L; Fernie AR; Kopka J
    FEBS Lett; 2005 Feb; 579(6):1332-7. PubMed ID: 15733837
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Joint GC-MS and LC-MS platforms for comprehensive plant metabolomics: repeatability and sample pre-treatment.
    t'Kindt R; Morreel K; Deforce D; Boerjan W; Van Bocxlaer J
    J Chromatogr B Analyt Technol Biomed Life Sci; 2009 Nov; 877(29):3572-80. PubMed ID: 19762291
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Assessment of sampling strategies for gas chromatography-mass spectrometry (GC-MS) based metabolomics of cyanobacteria.
    Krall L; Huege J; Catchpole G; Steinhauser D; Willmitzer L
    J Chromatogr B Analyt Technol Biomed Life Sci; 2009 Oct; 877(27):2952-60. PubMed ID: 19631594
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Plant metabolomics and its potential for systems biology research background concepts, technology, and methodology.
    Allwood JW; De Vos RC; Moing A; Deborde C; Erban A; Kopka J; Goodacre R; Hall RD
    Methods Enzymol; 2011; 500():299-336. PubMed ID: 21943904
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A rapid microwave-assisted derivatization of bacterial metabolome samples for gas chromatography/mass spectrometry analysis.
    Liebeke M; Wunder A; Lalk M
    Anal Biochem; 2010 Jun; 401(2):312-4. PubMed ID: 19397887
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dual labeling of metabolites for metabolome analysis (DLEMMA): A new approach for the identification and relative quantification of metabolites by means of dual isotope labeling and liquid chromatography-mass spectrometry.
    Feldberg L; Venger I; Malitsky S; Rogachev I; Aharoni A
    Anal Chem; 2009 Nov; 81(22):9257-66. PubMed ID: 19845344
    [TBL] [Abstract][Full Text] [Related]  

  • 39. 1H NMR, GC-EI-TOFMS, and data set correlation for fruit metabolomics: application to spatial metabolite analysis in melon.
    Biais B; Allwood JW; Deborde C; Xu Y; Maucourt M; Beauvoit B; Dunn WB; Jacob D; Goodacre R; Rolin D; Moing A
    Anal Chem; 2009 Apr; 81(8):2884-94. PubMed ID: 19298059
    [TBL] [Abstract][Full Text] [Related]  

  • 40. LC-MS-based metabolomics in the clinical laboratory.
    Becker S; Kortz L; Helmschrodt C; Thiery J; Ceglarek U
    J Chromatogr B Analyt Technol Biomed Life Sci; 2012 Feb; 883-884():68-75. PubMed ID: 22074957
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 31.