These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 19285799)

  • 1. Determination of parameters used to prevent ignition of stored materials and to protect against explosions in food industries.
    Ramírez A; García-Torrent J; Aguado PJ
    J Hazard Mater; 2009 Aug; 168(1):115-20. PubMed ID: 19285799
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental determination of self-heating and self-ignition risks associated with the dusts of agricultural materials commonly stored in silos.
    Ramírez A; García-Torrent J; Tascón A
    J Hazard Mater; 2010 Mar; 175(1-3):920-7. PubMed ID: 19944529
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Overall characterization of cork dust explosion.
    Pilão R; Ramalho E; Pinho C
    J Hazard Mater; 2006 May; 133(1-3):183-95. PubMed ID: 16297545
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Correlation between self-ignition of a dust layer on a hot surface and in baskets in an oven.
    Janes A; Carson D; Accorsi A; Chaineaux J; Tribouilloy B; Morainvillers D
    J Hazard Mater; 2008 Nov; 159(2-3):528-35. PubMed ID: 18384948
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reducing aluminum dust explosion hazards: case study of dust inerting in an aluminum buffing operation.
    Myers TJ
    J Hazard Mater; 2008 Nov; 159(1):72-80. PubMed ID: 18423857
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dust explosions-cases, causes, consequences, and control.
    Abbasi T; Abbasi SA
    J Hazard Mater; 2007 Feb; 140(1-2):7-44. PubMed ID: 17194531
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A model to assess dust explosion occurrence probability.
    Hassan J; Khan F; Amyotte P; Ferdous R
    J Hazard Mater; 2014 Mar; 268():140-9. PubMed ID: 24486616
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Explosive decomposition of ethylene oxide at elevated condition: effect of ignition energy, nitrogen dilution, and turbulence.
    Pekalski AA; Zevenbergen JF; Braithwaite M; Lemkowitz SM; Pasman HJ
    J Hazard Mater; 2005 Feb; 118(1-3):19-34. PubMed ID: 15721525
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ignition and explosion risks of nanopowders.
    Bouillard J; Vignes A; Dufaud O; Perrin L; Thomas D
    J Hazard Mater; 2010 Sep; 181(1-3):873-80. PubMed ID: 20591567
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurement of minimum ignition energies of dust clouds in the <1mJ region.
    Randeberg E; Eckhoff RK
    J Hazard Mater; 2007 Feb; 140(1-2):237-44. PubMed ID: 16950566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relative permittivity estimation of wheat starch: A critical property for understanding electrostatic hazards.
    Seidel JV; Castañeda-Uribe OA; Arevalo S; Muñoz F; Proud W; Avila A
    J Hazard Mater; 2019 Apr; 368():228-233. PubMed ID: 30682542
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ignition temperature of magnesium powder clouds: a theoretical model.
    Chunmiao Y; Chang L; Gang L; Peihong Z
    J Hazard Mater; 2012 Nov; 239-240():294-301. PubMed ID: 23022411
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Fire and Explosion Hazard of Coloured Powders Used during the Holi Festival.
    Kukfisz B; Piec R
    Int J Environ Res Public Health; 2021 Oct; 18(21):. PubMed ID: 34769610
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Explosion characteristics of LPG-air mixtures in closed vessels.
    Razus D; Brinzea V; Mitu M; Oancea D
    J Hazard Mater; 2009 Jun; 165(1-3):1248-52. PubMed ID: 19056172
    [TBL] [Abstract][Full Text] [Related]  

  • 15. exLOPA for explosion risks assessment.
    Markowski AS
    J Hazard Mater; 2007 Apr; 142(3):669-76. PubMed ID: 16876941
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Explosion risk evaluation during production of coating powder.
    Li G; Yuan C; Chen B
    J Hazard Mater; 2007 Oct; 149(2):515-7. PubMed ID: 17574336
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MIKE 3 versus HARTMANN apparatus: comparison of measured minimum ignition energy (MIE).
    Janes A; Chaineaux J; Carson D; Le Lore PA
    J Hazard Mater; 2008 Mar; 152(1):32-9. PubMed ID: 17659832
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of nitromethane concentration on ignition energy and explosion parameters in gaseous nitromethane/air mixtures.
    Zhang Q; Li W; Lin DC; He N; Duan Y
    J Hazard Mater; 2011 Jan; 185(2-3):756-62. PubMed ID: 20965653
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potential explosion hazard of carbonaceous nanoparticles: Explosion parameters of selected materials.
    Turkevich LA; Dastidar AG; Hachmeister Z; Lim M
    J Hazard Mater; 2015 Sep; 295():97-103. PubMed ID: 25913651
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Minimum ignition energy of nano and micro Ti powder in the presence of inert nano TiO₂ powder.
    Chunmiao Y; Amyotte PR; Hossain MN; Li C
    J Hazard Mater; 2014 Jun; 274():322-30. PubMed ID: 24797905
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.