These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 19285930)

  • 1. Porous silicon as a potential electrode material in a nerve repair setting: Tissue reactions.
    Johansson F; Wallman L; Danielsen N; Schouenborg J; Kanje M
    Acta Biomater; 2009 Jul; 5(6):2230-7. PubMed ID: 19285930
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioactive properties of nanostructured porous silicon for enhancing electrode to neuron interfaces.
    Moxon KA; Hallman S; Aslani A; Kalkhoran NM; Lelkes PI
    J Biomater Sci Polym Ed; 2007; 18(10):1263-81. PubMed ID: 17939885
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fiber composition of the rat sciatic nerve and its modification during regeneration through a sieve electrode.
    Castro J; Negredo P; Avendaño C
    Brain Res; 2008 Jan; 1190():65-77. PubMed ID: 18086465
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long term assessment of axonal regeneration through polyimide regenerative electrodes to interface the peripheral nerve.
    Lago N; Ceballos D; Rodríguez FJ; Stieglitz T; Navarro X
    Biomaterials; 2005 May; 26(14):2021-31. PubMed ID: 15576176
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanostructured surface modification of ceramic-based microelectrodes to enhance biocompatibility for a direct brain-machine interface.
    Moxon KA; Kalkhoran NM; Markert M; Sambito MA; McKenzie JL; Webster JT
    IEEE Trans Biomed Eng; 2004 Jun; 51(6):881-9. PubMed ID: 15188854
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication and properties of a porous chitin/chitosan conduit for nerve regeneration.
    Yang Y; Gu X; Tan R; Hu W; Wang X; Zhang P; Zhang T
    Biotechnol Lett; 2004 Dec; 26(23):1793-7. PubMed ID: 15672216
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Silicon-substrate microelectrode arrays for parallel recording of neural activity in peripheral and cranial nerves.
    Kovacs GT; Storment CW; Halks-Miller M; Belczynski CR; Della Santina CC; Lewis ER; Maluf NI
    IEEE Trans Biomed Eng; 1994 Jun; 41(6):567-77. PubMed ID: 7927376
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Tissue reaction after implantation of ceramic biomaterials with introduced electrokinetic zeta potential on surface].
    Lewandowski R; Rutowski R; Staniszewska-Kuś J; Pielka S; Wnukiewicz B
    Polim Med; 2004; 34(1):13-25. PubMed ID: 15222224
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neurobiological assessment of regenerative electrodes for bidirectional interfacing injured peripheral nerves.
    Lago N; Udina E; Ramachandran A; Navarro X
    IEEE Trans Biomed Eng; 2007 Jun; 54(6 Pt 1):1129-37. PubMed ID: 17554832
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tissue reactions evoked by porous and plane surfaces made out of silicon and titanium.
    Rosengren A; Wallman L; Danielsen N; Laurell T; Bjursten LM
    IEEE Trans Biomed Eng; 2002 Apr; 49(4):392-9. PubMed ID: 11942731
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoscale laminin coating modulates cortical scarring response around implanted silicon microelectrode arrays.
    He W; McConnell GC; Bellamkonda RV
    J Neural Eng; 2006 Dec; 3(4):316-26. PubMed ID: 17124336
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chronic histological effects of the flat interface nerve electrode.
    Leventhal DK; Cohen M; Durand DM
    J Neural Eng; 2006 Jun; 3(2):102-13. PubMed ID: 16705266
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Porous silicon as a neural electrode material.
    Persson J; Danielsen N; Wallman L
    J Biomater Sci Polym Ed; 2007; 18(10):1301-8. PubMed ID: 17939887
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extraction force and cortical tissue reaction of silicon microelectrode arrays implanted in the rat brain.
    McConnell GC; Schneider TM; Owens DJ; Bellamkonda RV
    IEEE Trans Biomed Eng; 2007 Jun; 54(6 Pt 1):1097-107. PubMed ID: 17554828
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A micromachined silicon sieve electrode for nerve regeneration applications.
    Akin T; Najafi K; Smoke RH; Bradley RM
    IEEE Trans Biomed Eng; 1994 Apr; 41(4):305-13. PubMed ID: 8063296
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrasoft microwire neural electrodes improve chronic tissue integration.
    Du ZJ; Kolarcik CL; Kozai TDY; Luebben SD; Sapp SA; Zheng XS; Nabity JA; Cui XT
    Acta Biomater; 2017 Apr; 53():46-58. PubMed ID: 28185910
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biosensing and protein fluorescence enhancement by functionalized porous silicon devices.
    Palestino G; Agarwal V; Aulombard R; Pérez E; Gergely C
    Langmuir; 2008 Dec; 24(23):13765-71. PubMed ID: 18959435
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long-term in vivo biomechanical properties and biocompatibility of poly(2-hydroxyethyl methacrylate-co-methyl methacrylate) nerve conduits.
    Belkas JS; Munro CA; Shoichet MS; Johnston M; Midha R
    Biomaterials; 2005 May; 26(14):1741-9. PubMed ID: 15576148
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) conduits for peripheral nerve regeneration.
    Bian YZ; Wang Y; Aibaidoula G; Chen GQ; Wu Q
    Biomaterials; 2009 Jan; 30(2):217-25. PubMed ID: 18849069
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of silicon doping on bone formation within alumina porous domains.
    Pabbruwe MB; Standard OC; Sorrell CC; Howlett CR
    J Biomed Mater Res A; 2004 Nov; 71(2):250-7. PubMed ID: 15386488
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.