These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 19286432)

  • 1. Ocular injectable formulation assessment for oxidized dextran-based hydrogels.
    Maia J; Ribeiro MP; Ventura C; Carvalho RA; Correia IJ; Gil MH
    Acta Biomater; 2009 Jul; 5(6):1948-55. PubMed ID: 19286432
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Injectable dextran hydrogels fabricated by metal-free click chemistry for cartilage tissue engineering.
    Wang X; Li Z; Shi T; Zhao P; An K; Lin C; Liu H
    Mater Sci Eng C Mater Biol Appl; 2017 Apr; 73():21-30. PubMed ID: 28183600
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antibacterial and conductive injectable hydrogels based on quaternized chitosan-graft-polyaniline/oxidized dextran for tissue engineering.
    Zhao X; Li P; Guo B; Ma PX
    Acta Biomater; 2015 Oct; 26():236-48. PubMed ID: 26272777
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-cytotoxic, in situ gelable hydrogels composed of N-carboxyethyl chitosan and oxidized dextran.
    Weng L; Romanov A; Rooney J; Chen W
    Biomaterials; 2008 Oct; 29(29):3905-13. PubMed ID: 18639926
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzymatically-crosslinked injectable hydrogels based on biomimetic dextran-hyaluronic acid conjugates for cartilage tissue engineering.
    Jin R; Teixeira LS; Dijkstra PJ; van Blitterswijk CA; Karperien M; Feijen J
    Biomaterials; 2010 Apr; 31(11):3103-13. PubMed ID: 20116847
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A biomimetic hydrogel based on methacrylated dextran-graft-lysine and gelatin for 3D smooth muscle cell culture.
    Liu Y; Chan-Park MB
    Biomaterials; 2010 Feb; 31(6):1158-70. PubMed ID: 19897239
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-gelling hydrogels based on oppositely charged dextran microspheres.
    Van Tomme SR; van Steenbergen MJ; De Smedt SC; van Nostrum CF; Hennink WE
    Biomaterials; 2005 May; 26(14):2129-35. PubMed ID: 15576188
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A self-healing hydrogel as an injectable instructive carrier for cellular morphogenesis.
    Wei Z; Gerecht S
    Biomaterials; 2018 Dec; 185():86-96. PubMed ID: 30236839
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photocrosslinkable biodegradable responsive hydrogels as drug delivery systems.
    Almeida JF; Ferreira P; Lopes A; Gil MH
    Int J Biol Macromol; 2011 Dec; 49(5):948-54. PubMed ID: 21871915
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Injectable PAMAM/ODex double-crosslinked hydrogels with high mechanical strength.
    Li S; Wang J; Song L; Zhou Y; Zhao J; Hou X; Yuan X
    Biomed Mater; 2016 Dec; 12(1):015012. PubMed ID: 27934783
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polymeric hydrogels for novel contact lens-based ophthalmic drug delivery systems: a review.
    Xinming L; Yingde C; Lloyd AW; Mikhalovsky SV; Sandeman SR; Howel CA; Liewen L
    Cont Lens Anterior Eye; 2008 Apr; 31(2):57-64. PubMed ID: 17962066
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-crosslinked oxidized alginate/gelatin hydrogel as injectable, adhesive biomimetic scaffolds for cartilage regeneration.
    Balakrishnan B; Joshi N; Jayakrishnan A; Banerjee R
    Acta Biomater; 2014 Aug; 10(8):3650-63. PubMed ID: 24811827
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Retention of transforming growth factor beta1 using functionalized dextran-based hydrogels.
    Maire M; Logeart-Avramoglou D; Degat MC; Chaubet F
    Biomaterials; 2005 May; 26(14):1771-80. PubMed ID: 15576151
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Injectable, rapid gelling and highly flexible hydrogel composites as growth factor and cell carriers.
    Wang F; Li Z; Khan M; Tamama K; Kuppusamy P; Wagner WR; Sen CK; Guan J
    Acta Biomater; 2010 Jun; 6(6):1978-91. PubMed ID: 20004745
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biodegradable dextran hydrogels crosslinked by stereocomplex formation for the controlled release of pharmaceutical proteins.
    Hennink WE; De Jong SJ; Bos GW; Veldhuis TF; van Nostrum CF
    Int J Pharm; 2004 Jun; 277(1-2):99-104. PubMed ID: 15158973
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photocrosslinking of dextran and polyaspartamide derivatives: a combination suitable for colon-specific drug delivery.
    Pitarresi G; Casadei MA; Mandracchia D; Paolicelli P; Palumbo FS; Giammona G
    J Control Release; 2007 Jun; 119(3):328-38. PubMed ID: 17475357
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reducing the Oxidation Level of Dextran Aldehyde in a Chitosan/Dextran-Based Surgical Hydrogel Increases Biocompatibility and Decreases Antimicrobial Efficacy.
    Chan M; Brooks HJ; Moratti SC; Hanton LR; Cabral JD
    Int J Mol Sci; 2015 Jun; 16(6):13798-814. PubMed ID: 26086827
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tissue reactions of in situ formed dextran hydrogels crosslinked by stereocomplex formation after subcutaneous implantation in rats.
    Bos GW; Hennink WE; Brouwer LA; den Otter W; Veldhuis TF; van Nostrum CF; van Luyn MJ
    Biomaterials; 2005 Jun; 26(18):3901-9. PubMed ID: 15626437
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Macroporous interconnected dextran scaffolds of controlled porosity for tissue-engineering applications.
    Lévesque SG; Lim RM; Shoichet MS
    Biomaterials; 2005 Dec; 26(35):7436-46. PubMed ID: 16023718
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fast in situ enzymatic gelation of PPO-PEO block copolymer for injectable intraocular lens in vivo.
    Lee H; Oh HJ; Yoon KC; Tae G; Kim YH
    J Biomater Appl; 2014 Apr; 28(8):1247-63. PubMed ID: 24051202
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.