These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 19286808)

  • 1. Identification and characterization of a novel multidrug resistance operon, mdtRP (yusOP), of Bacillus subtilis.
    Kim JY; Inaoka T; Hirooka K; Matsuoka H; Murata M; Ohki R; Adachi Y; Fujita Y; Ochi K
    J Bacteriol; 2009 May; 191(10):3273-81. PubMed ID: 19286808
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ScoC regulates bacilysin production at the transcription level in Bacillus subtilis.
    Inaoka T; Wang G; Ochi K
    J Bacteriol; 2009 Dec; 191(23):7367-71. PubMed ID: 19801406
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dual regulation of the Bacillus subtilis regulon comprising the lmrAB and yxaGH operons and yxaF gene by two transcriptional repressors, LmrA and YxaF, in response to flavonoids.
    Hirooka K; Kunikane S; Matsuoka H; Yoshida K; Kumamoto K; Tojo S; Fujita Y
    J Bacteriol; 2007 Jul; 189(14):5170-82. PubMed ID: 17483215
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptional regulation of the Bacillus subtilis bscR-CYP102A3 operon by the BscR repressor and differential induction of cytochrome CYP102A3 expression by oleic acid and palmitate.
    Lee TR; Hsu HP; Shaw GC
    J Biochem; 2001 Oct; 130(4):569-74. PubMed ID: 11574077
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of the rhaEWRBMA Operon Involved in l-Rhamnose Catabolism through Two Transcriptional Factors, RhaR and CcpA, in Bacillus subtilis.
    Hirooka K; Kodoi Y; Satomura T; Fujita Y
    J Bacteriol; 2015 Dec; 198(5):830-45. PubMed ID: 26712933
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multidrug resistant phenotype of Bacillus subtilis spontaneous mutants isolated in the presence of puromycin and lincomycin.
    Murata M; Ohno S; Kumano M; Yamane K; Ohki R
    Can J Microbiol; 2003 Feb; 49(2):71-7. PubMed ID: 12718394
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using a phenotype microarray and transcriptome analysis to elucidate multi-drug resistance regulated by the PhoR/PhoP two-component system in Bacillus subtilis strain NCD-2.
    Guo Q; Dong L; Wang P; Su Z; Liu X; Zhao W; Zhang X; Li S; Lu X; Ma P
    Microbiol Res; 2020 Oct; 239():126557. PubMed ID: 32688186
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of a mannose utilization system in Bacillus subtilis.
    Sun T; Altenbuchner J
    J Bacteriol; 2010 Apr; 192(8):2128-39. PubMed ID: 20139185
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two highly similar multidrug transporters of Bacillus subtilis whose expression is differentially regulated.
    Ahmed M; Lyass L; Markham PN; Taylor SS; Vázquez-Laslop N; Neyfakh AA
    J Bacteriol; 1995 Jul; 177(14):3904-10. PubMed ID: 7608059
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulators of the Bacillus subtilis cydABCD operon: identification of a negative regulator, CcpA, and a positive regulator, ResD.
    Puri-Taneja A; Schau M; Chen Y; Hulett FM
    J Bacteriol; 2007 May; 189(9):3348-58. PubMed ID: 17322317
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PrcR, a PucR-type transcriptional activator, is essential for proline utilization and mediates proline-responsive expression of the proline utilization operon putBCP in Bacillus subtilis.
    Huang SC; Lin TH; Shaw GC
    Microbiology (Reading); 2011 Dec; 157(Pt 12):3370-3377. PubMed ID: 21964733
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two MerR homologues that affect copper induction of the Bacillus subtilis copZA operon.
    Gaballa A; Cao M; Helmann JD
    Microbiology (Reading); 2003 Dec; 149(Pt 12):3413-3421. PubMed ID: 14663075
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of the kduID operon of Bacillus subtilis by the KdgR repressor and the ccpA gene: identification of two KdgR-binding sites within the kdgR-kduI intergenic region.
    Lin JS; Shaw GC
    Microbiology (Reading); 2007 Mar; 153(Pt 3):701-710. PubMed ID: 17322190
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bacillus subtilis YdiH is a direct negative regulator of the cydABCD operon.
    Schau M; Chen Y; Hulett FM
    J Bacteriol; 2004 Jul; 186(14):4585-95. PubMed ID: 15231791
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catabolite repression of dra-nupC-pdp operon expression in Bacillus subtilis.
    Zeng X; Galinier A; Saxild HH
    Microbiology (Reading); 2000 Nov; 146 ( Pt 11)():2901-2908. PubMed ID: 11065368
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of the glycolytic gapA operon by the catabolite control protein A in Bacillus subtilis: a novel mechanism of CcpA-mediated regulation.
    Ludwig H; Rebhan N; Blencke HM; Merzbacher M; Stülke J
    Mol Microbiol; 2002 Jul; 45(2):543-53. PubMed ID: 12123463
    [TBL] [Abstract][Full Text] [Related]  

  • 17. HxlR, a member of the DUF24 protein family, is a DNA-binding protein that acts as a positive regulator of the formaldehyde-inducible hxlAB operon in Bacillus subtilis.
    Yurimoto H; Hirai R; Matsuno N; Yasueda H; Kato N; Sakai Y
    Mol Microbiol; 2005 Jul; 57(2):511-9. PubMed ID: 15978081
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression of the Bacillus subtilis ureABC operon is controlled by multiple regulatory factors including CodY, GlnR, TnrA, and Spo0H.
    Wray LV; Ferson AE; Fisher SH
    J Bacteriol; 1997 Sep; 179(17):5494-501. PubMed ID: 9287005
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isolation and characterization of Bacillus subtilis groE regulatory mutants: evidence for orf39 in the dnaK operon as a repressor gene in regulating the expression of both groE and dnaK.
    Yuan G; Wong SL
    J Bacteriol; 1995 Nov; 177(22):6462-8. PubMed ID: 7592421
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The MarR-type repressor MhqR (YkvE) regulates multiple dioxygenases/glyoxalases and an azoreductase which confer resistance to 2-methylhydroquinone and catechol in Bacillus subtilis.
    Töwe S; Leelakriangsak M; Kobayashi K; Van Duy N; Hecker M; Zuber P; Antelmann H
    Mol Microbiol; 2007 Oct; 66(1):40-54. PubMed ID: 17725564
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.