These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Contribution of ATM and FOXE1 (TTF2) to risk of papillary thyroid carcinoma in Belarusian children exposed to radiation. Damiola F; Byrnes G; Moissonnier M; Pertesi M; Deltour I; Fillon A; Le Calvez-Kelm F; Tenet V; McKay-Chopin S; McKay JD; Malakhova I; Masyakin V; Cardis E; Lesueur F; Kesminiene A Int J Cancer; 2014 Apr; 134(7):1659-68. PubMed ID: 24105688 [TBL] [Abstract][Full Text] [Related]
5. The FOXE1 locus is a major genetic determinant for radiation-related thyroid carcinoma in Chernobyl. Takahashi M; Saenko VA; Rogounovitch TI; Kawaguchi T; Drozd VM; Takigawa-Imamura H; Akulevich NM; Ratanajaraya C; Mitsutake N; Takamura N; Danilova LI; Lushchik ML; Demidchik YE; Heath S; Yamada R; Lathrop M; Matsuda F; Yamashita S Hum Mol Genet; 2010 Jun; 19(12):2516-23. PubMed ID: 20350937 [TBL] [Abstract][Full Text] [Related]
6. Investigation of DNA repair-related SNPs underlying susceptibility to papillary thyroid carcinoma reveals MGMT as a novel candidate gene in Belarusian children exposed to radiation. Lonjou C; Damiola F; Moissonnier M; Durand G; Malakhova I; Masyakin V; Le Calvez-Kelm F; Cardis E; Byrnes G; Kesminiene A; Lesueur F BMC Cancer; 2017 May; 17(1):328. PubMed ID: 28499365 [TBL] [Abstract][Full Text] [Related]
7. ATM haplotypes and cellular response to DNA damage: association with breast cancer risk and clinical radiosensitivity. Angèle S; Romestaing P; Moullan N; Vuillaume M; Chapot B; Friesen M; Jongmans W; Cox DG; Pisani P; Gérard JP; Hall J Cancer Res; 2003 Dec; 63(24):8717-25. PubMed ID: 14695186 [TBL] [Abstract][Full Text] [Related]
8. ATM polymorphisms are associated with risk of radiation-induced pneumonitis. Zhang L; Yang M; Bi N; Fang M; Sun T; Ji W; Tan W; Zhao L; Yu D; Lin D; Wang L Int J Radiat Oncol Biol Phys; 2010 Aug; 77(5):1360-8. PubMed ID: 20171797 [TBL] [Abstract][Full Text] [Related]
9. Genetic polymorphisms of ataxia telangiectasia mutated and breast cancer risk. Lee KM; Choi JY; Park SK; Chung HW; Ahn B; Yoo KY; Han W; Noh DY; Ahn SH; Kim H; Wei Q; Kang D Cancer Epidemiol Biomarkers Prev; 2005 Apr; 14(4):821-5. PubMed ID: 15824150 [TBL] [Abstract][Full Text] [Related]
11. Association of P53 and ATM polymorphisms with risk of radiation-induced pneumonitis in lung cancer patients treated with radiotherapy. Yang M; Zhang L; Bi N; Ji W; Tan W; Zhao L; Yu D; Wu C; Wang L; Lin D Int J Radiat Oncol Biol Phys; 2011 Apr; 79(5):1402-7. PubMed ID: 20729006 [TBL] [Abstract][Full Text] [Related]
12. Large deletions in mitochondrial DNA in radiation-associated human thyroid tumors. Rogounovitch TI; Saenko VA; Shimizu-Yoshida Y; Abrosimov AY; Lushnikov EF; Roumiantsev PO; Ohtsuru A; Namba H; Tsyb AF; Yamashita S Cancer Res; 2002 Dec; 62(23):7031-41. PubMed ID: 12460924 [TBL] [Abstract][Full Text] [Related]
13. Common variants of GSTP1, GSTA1, and TGFβ1 are associated with the risk of radiation-induced fibrosis in breast cancer patients. Terrazzino S; La Mattina P; Gambaro G; Masini L; Franco P; Canonico PL; Genazzani AA; Krengli M Int J Radiat Oncol Biol Phys; 2012 Jun; 83(2):504-11. PubMed ID: 22079734 [TBL] [Abstract][Full Text] [Related]
14. Association of single nucleotide polymorphisms in ATM, GSTP1, SOD2, TGFB1, XPD and XRCC1 with clinical and cellular radiosensitivity. Zschenker O; Raabe A; Boeckelmann IK; Borstelmann S; Szymczak S; Wellek S; Rades D; Hoeller U; Ziegler A; Dikomey E; Borgmann K Radiother Oncol; 2010 Oct; 97(1):26-32. PubMed ID: 20170971 [TBL] [Abstract][Full Text] [Related]
15. Genetic variants of NPAT-ATM and AURKA are associated with an early adverse reaction in the gastrointestinal tract of patients with cervical cancer treated with pelvic radiation therapy. Ishikawa A; Suga T; Shoji Y; Kato S; Ohno T; Ishikawa H; Yoshinaga S; Ohara K; Ariga H; Nomura K; Shibamoto Y; Ishikawa K; Moritake T; Michikawa Y; Iwakawa M; Imai T Int J Radiat Oncol Biol Phys; 2011 Nov; 81(4):1144-52. PubMed ID: 21050672 [TBL] [Abstract][Full Text] [Related]
16. Radiosensitivity of human fibroblasts is associated with amino acid substitution variants in susceptible genes and correlates with the number of risk alleles. Alsbeih G; El-Sebaie M; Al-Harbi N; Al-Buhairi M; Al-Hadyan K; Al-Rajhi N Int J Radiat Oncol Biol Phys; 2007 May; 68(1):229-35. PubMed ID: 17331670 [TBL] [Abstract][Full Text] [Related]
17. Single-nucleotide polymorphisms at the TP53-binding or responsive promoter regions of BAX and BCL2 genes and risk of squamous cell carcinoma of the head and neck. Chen K; Hu Z; Wang LE; Sturgis EM; El-Naggar AK; Zhang W; Wei Q Carcinogenesis; 2007 Sep; 28(9):2008-12. PubMed ID: 17693666 [TBL] [Abstract][Full Text] [Related]
18. Expression of cell cycle biomarkers and telomere length in papillary thyroid carcinoma: a comparative study between radiation-associated and spontaneous cancers. Achille M; Boukheris H; Caillou B; Talbot M; de Vathaire F; Sabatier L; Desmaze C; Schlumberger M; Soria JC Am J Clin Oncol; 2009 Feb; 32(1):1-8. PubMed ID: 19194115 [TBL] [Abstract][Full Text] [Related]
19. A radiation-induced gene signature distinguishes post-Chernobyl from sporadic papillary thyroid cancers. Port M; Boltze C; Wang Y; Röper B; Meineke V; Abend M Radiat Res; 2007 Dec; 168(6):639-49. PubMed ID: 18088181 [TBL] [Abstract][Full Text] [Related]
20. Polymorphisms in selected DNA repair genes and cell cycle regulating genes involved in the risk of papillary thyroid carcinoma. Halkova T; Dvorakova S; Sykorova V; Vaclavikova E; Vcelak J; Vlcek P; Sykorova P; Kodetova D; Betka J; Lastuvka P; Bavor P; Hoch J; Katra R; Bendlova B Cancer Biomark; 2016 Jun; 17(1):97-106. PubMed ID: 27314298 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]