These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 1928737)

  • 1. Indirect determination of free cyanide in industrial waste effluent by atomic absorption spectrometry.
    Chattaraj S; Das AK
    Analyst; 1991 Jul; 116(7):739-41. PubMed ID: 1928737
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Indirect determination of cyanide in water by atomic-absorption spectrophotometry.
    Bo-Xing X; Tong-Ming X; Yu-Zhi F
    Talanta; 1984 Feb; 31(2):141-3. PubMed ID: 18963553
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel sensitive spectrophotometric method for the trace determination of cyanide in industrial effluent.
    Nagaraja P; Hemantha Kumar MS; Yathirajan HS; Prakash JS
    Anal Sci; 2002 Sep; 18(9):1027-30. PubMed ID: 12243398
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Indirect atomic absorption spectrometric determination of sulfate in human blood serum.
    Chattaraj S; Das AK
    Analyst; 1992 Mar; 117(3):413-6. PubMed ID: 1580372
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved derivatisation methods for the determination of free cyanide and cyanate in mine effluent.
    Zvinowanda CM; Okonkwo JO; Gurira RC
    J Hazard Mater; 2008 Oct; 158(1):196-201. PubMed ID: 18313212
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Studies on solvent extraction of copper and cyanide from waste cyanide solution.
    Xie F; Dreisinger D
    J Hazard Mater; 2009 Sep; 169(1-3):333-8. PubMed ID: 19394141
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of cyanide by a flow injection analysis-atomic absorption spectrometric method.
    López Gómez AV; Martínez Calatayud J
    Analyst; 1998 Oct; 123(10):2103-7. PubMed ID: 10209895
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Indirect determination of tungstate in rat tissues by atomic absorption spectrometry.
    Chakraborty D; Das AK
    Analyst; 1989 Jan; 114(1):67-9. PubMed ID: 2712308
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Octadecyl bonded silica membrane disk modified with Cyanex302 for separation and flame atomic absorption spectrometric determination of nickel from tap water and industrial effluent.
    Karve M; Rajgor RV
    J Hazard Mater; 2009 Jul; 166(1):576-80. PubMed ID: 19124200
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toxicity of cyanide, iron-cyanide complexes, and a blast furnace effluent to larvae of the doughboy scallop, Chlamys asperrimus.
    Pablo F; Buckeny RT; Lim RP
    Bull Environ Contam Toxicol; 1997 Jan; 58(1):93-100. PubMed ID: 8952931
    [No Abstract]   [Full Text] [Related]  

  • 11. A comparative study of AgX (X = Cl(-), Br(-), I(-) and N(3)(-)) solid-phase reactors for flow-injection determination of cyanide in electroplating wastewater.
    Noroozifar M; Khorasani-Motlagh M; Taheri A; Zare-Dorabei R
    Anal Sci; 2008 May; 24(5):669-72. PubMed ID: 18469476
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New use of polypyrrole-chloride for selective preconcentration of copper prior to its determination of flame atomic absorption spectrometry.
    Sönmez S; Divrikli U; Elçi L
    Talanta; 2010 Aug; 82(3):939-44. PubMed ID: 20678649
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cloud point extraction and flame atomic absorption spectrometry determination of trace amounts of copper(II) ions in water samples.
    Fathi SA; Yaftian MR
    J Colloid Interface Sci; 2009 Jun; 334(2):167-70. PubMed ID: 19394631
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct determination of manganese in produced waters from petroleum exploration by Electrothermal Atomic Absorption Spectrometry using Ir-W as permanent modifier.
    Cassella RJ; Dos Reis LG; Santelli RE; Oliveira EP
    Talanta; 2011 Jul; 85(1):415-9. PubMed ID: 21645718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Determination of trace silver by flame atomic absorption spectrometry using chitosan enriching method].
    Sun JM; Xu P; Han XT; Sun HW
    Guang Pu Xue Yu Guang Pu Fen Xi; 2005 Feb; 25(2):290-2. PubMed ID: 15852880
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of copper in water using on-line plasma-excited atomic absorption spectroscopy (AAS).
    Porento M; Sutinen V; Julku T; Oikari R
    Appl Spectrosc; 2011 Jun; 65(6):678-83. PubMed ID: 21639990
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ligandless dispersive liquid-liquid microextraction for the separation of trace amounts of silver ions in water samples and flame atomic absorption spectrometry determination.
    Mohammadi SZ; Afzali D; Taher MA; Baghelani YM
    Talanta; 2009 Dec; 80(2):875-9. PubMed ID: 19836567
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Indirect determination of iodate by atomic-absorption spectrophotometry.
    Chakraborty D; Das AK
    Talanta; 1989 Jun; 36(6):669-71. PubMed ID: 18964777
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dispersive liquid-liquid microextraction combined with graphite furnace atomic absorption spectrometry: ultra trace determination of cadmium in water samples.
    Zeini Jahromi E; Bidari A; Assadi Y; Milani Hosseini MR; Jamali MR
    Anal Chim Acta; 2007 Mar; 585(2):305-11. PubMed ID: 17386679
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of zinc levels in waters from southeastern Spain by electrothermal atomic absorption spectrometry: relationship with industrial activity.
    Terrés-Martos C; Navarro-Alarcón M; Martín-Lagos F; Giménez-Martínez R; López-García De La Serrana H; López-Martínez MC
    Water Res; 2002 Apr; 36(7):1912-6. PubMed ID: 12044092
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.