These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 19287482)

  • 1. Probing cellular dynamics with a chemical signal generator.
    Kuczenski B; Ruder WC; Messner WC; Leduc PR
    PLoS One; 2009; 4(3):e4847. PubMed ID: 19287482
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidic Chemical Function Generator for Probing Dynamic Cell Signaling.
    Chen P; Guo Y; Feng X; Yan S; Wang J; Li Y; Du W; Liu BF
    Anal Chem; 2017 Sep; 89(17):9209-9217. PubMed ID: 28791865
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A generalizable, tunable microfluidic platform for delivering fast temporally varying chemical signals to probe single-cell response dynamics.
    Chingozha L; Zhan M; Zhu C; Lu H
    Anal Chem; 2014 Oct; 86(20):10138-47. PubMed ID: 25254360
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A sharp-edge-based acoustofluidic chemical signal generator.
    Huang PH; Chan CY; Li P; Wang Y; Nama N; Bachman H; Huang TJ
    Lab Chip; 2018 May; 18(10):1411-1421. PubMed ID: 29668002
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic Mixing and Analog On-Chip Concentration Control Using Fluidic Dielectrophoresis.
    Mavrogiannis N; Desmond M; Ling K; Fu X; Gagnon Z
    Micromachines (Basel); 2016 Nov; 7(11):. PubMed ID: 30404385
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A microfluidic platform with pneumatically switchable single-cell traps for selective intracellular signals probing.
    Wang Y; Zhu J; Chen P; Hu L; Feng X; Du W; Liu BF
    Talanta; 2019 Jan; 192():431-438. PubMed ID: 30348414
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A microfluidic device with spatiotemporal wall shear stress and ATP signals to investigate the intracellular calcium dynamics in vascular endothelial cells.
    Chen ZZ; Yuan WM; Xiang C; Zeng DP; Liu B; Qin KR
    Biomech Model Mechanobiol; 2019 Feb; 18(1):189-202. PubMed ID: 30187350
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic platform for real-time signaling analysis of multiple single T cells in parallel.
    Faley S; Seale K; Hughey J; Schaffer DK; VanCompernolle S; McKinney B; Baudenbacher F; Unutmaz D; Wikswo JP
    Lab Chip; 2008 Oct; 8(10):1700-12. PubMed ID: 18813394
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cytosolic free Ca2+ in daunorubicin and vincristine resistant Ehrlich ascites tumor cells. Drug accumulation is independent of intracellular Ca2+ changes.
    Bouchelouche P; Friche E; Sehested M; Jensen PB; Skovsgaard T
    Biochem Pharmacol; 1991 Jan; 41(2):243-53. PubMed ID: 1899193
    [TBL] [Abstract][Full Text] [Related]  

  • 10. T Cell Dynamic Activation and Functional Analysis in Nanoliter Droplet Microarray.
    Sarkar S; Motwani V; Sabhachandani P; Cohen N; Konry T
    J Clin Cell Immunol; 2015 Jun; 6(3):. PubMed ID: 26613065
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A digitized fluorescence imaging study of intracellular free calcium, mitochondrial integrity and cytotoxicity in rat renal cells exposed to ionomycin, a calcium ionophore.
    Jiang T; Grant RL; Acosta D
    Toxicology; 1993 Dec; 85(1):41-65. PubMed ID: 8291069
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A review on microfluidics manipulation of the extracellular chemical microenvironment and its emerging application to cell analysis.
    Chen P; Li S; Guo Y; Zeng X; Liu BF
    Anal Chim Acta; 2020 Aug; 1125():94-113. PubMed ID: 32674786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Universal signal generator for dynamic cell stimulation.
    Piehler A; Ghorashian N; Zhang C; Tay S
    Lab Chip; 2017 Jun; 17(13):2218-2224. PubMed ID: 28573304
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic Generation of Concentration- and Temporal-Dependent Chemical Signals in an Integrated Microfluidic Device for Single-Cell Analysis.
    Gonzalez-Suarez AM; Peña-Del Castillo JG; Hernández-Cruz A; Garcia-Cordero JL
    Anal Chem; 2018 Jul; 90(14):8331-8336. PubMed ID: 29916698
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing intracellular dynamics in living cells with near-field optics.
    Bui JD; Zelles T; Lou HJ; Gallion VL; Phillips MI; Tan W
    J Neurosci Methods; 1999 Jul; 89(1):9-15. PubMed ID: 10476678
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generation of dynamic chemical signals with microfluidic C-DACs.
    Chen L; Azizi F; Mastrangelo CH
    Lab Chip; 2007 Jul; 7(7):850-5. PubMed ID: 17594003
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic flow-encoded switching for parallel control of dynamic cellular microenvironments.
    King KR; Wang S; Jayaraman A; Yarmush ML; Toner M
    Lab Chip; 2008 Jan; 8(1):107-16. PubMed ID: 18094768
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transmembrane-mediated changes in [Ca2+] are involved in the signaling pathway leading to macrophage cytocidal differentiation: implications of localized changes in intracellular [Ca2+] and of interferon priming on Ca2+ utilization.
    Underwood GA; Riches DW
    Mol Biol Cell; 1992 Mar; 3(3):335-47. PubMed ID: 1627833
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of passive mixing behavior in a poly(dimethylsiloxane) microfluidic channel using confocal fluorescence and Raman microscopy.
    Park T; Lee M; Choo J; Kim YS; Lee EK; Kim DJ; Lee SH
    Appl Spectrosc; 2004 Oct; 58(10):1172-9. PubMed ID: 15527517
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulation of fluidic resistance and capacitance for long-term, high-speed feedback control of a microfluidic interface.
    Kim Y; Kuczenski B; LeDuc PR; Messner WC
    Lab Chip; 2009 Sep; 9(17):2603-9. PubMed ID: 19680585
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.