These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 19288145)

  • 1. Linking conformation change to hemoglobin activation via chain-selective time-resolved resonance Raman spectroscopy of protoheme/mesoheme hybrids.
    Balakrishnan G; Ibrahim M; Mak PJ; Hata J; Kincaid JR; Spiro TG
    J Biol Inorg Chem; 2009 Jun; 14(5):741-50. PubMed ID: 19288145
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential control of heme reactivity in alpha and beta subunits of hemoglobin: a combined Raman spectroscopic and computational study.
    Jones EM; Monza E; Balakrishnan G; Blouin GC; Mak PJ; Zhu Q; Kincaid JR; Guallar V; Spiro TG
    J Am Chem Soc; 2014 Jul; 136(29):10325-39. PubMed ID: 24991732
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Subunit-selective interrogation of CO recombination in carbonmonoxy hemoglobin by isotope-edited time-resolved resonance Raman spectroscopy.
    Balakrishnan G; Zhao X; Podstawska E; Proniewicz LM; Kincaid JR; Spiro TG
    Biochemistry; 2009 Apr; 48(14):3120-6. PubMed ID: 19245215
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A possible allosteric communication pathway identified through a resonance Raman study of four beta37 mutants of human hemoglobin A.
    Peterson ES; Friedman JM
    Biochemistry; 1998 Mar; 37(13):4346-57. PubMed ID: 9521755
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural heterogeneity of the Fe(2+)-N epsilon (HisF8) bond in various hemoglobin and myoglobin derivatives probed by the Raman-active iron histidine stretching mode.
    Gilch H; Schweitzer-Stenner R; Dreybrodt W
    Biophys J; 1993 Oct; 65(4):1470-85. PubMed ID: 8274641
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heme structure of hemoglobin M Iwate [alpha 87(F8)His-->Tyr]: a UV and visible resonance Raman study.
    Nagai M; Aki M; Li R; Jin Y; Sakai H; Nagatomo S; Kitagawa T
    Biochemistry; 2000 Oct; 39(43):13093-105. PubMed ID: 11052661
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional implications of the proximal hydrogen-bonding network in myoglobin: a resonance Raman and kinetic study of Leu89, Ser92, His97, and F-helix swap mutants.
    Peterson ES; Friedman JM; Chien EY; Sligar SG
    Biochemistry; 1998 Sep; 37(35):12301-19. PubMed ID: 9724545
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intersubunit communication via changes in hemoglobin quaternary structures revealed by time-resolved resonance Raman spectroscopy: direct observation of the Perutz mechanism.
    Yamada K; Ishikawa H; Mizuno M; Shibayama N; Mizutani Y
    J Phys Chem B; 2013 Oct; 117(41):12461-8. PubMed ID: 24067234
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resonance Raman investigation of the effects of copper binding to iron-mesoporphyrin.histidine-rich glycoprotein complexes.
    Larsen RW; Nunez DJ; Morgan WT; Muhoberac BB; Ondrias MR
    Biophys J; 1992 Apr; 61(4):1007-17. PubMed ID: 1581496
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resonance Raman study of deoxy and ligated (O2 and CO) mesoheme IX-reconstituted myoglobin, hemoglobin and its alpha and beta subunits.
    Podstawka E; Proniewicz LM
    J Inorg Biochem; 2004 Sep; 98(9):1502-12. PubMed ID: 15337602
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quaternary structure sensitive tyrosine residues in human hemoglobin: UV resonance raman studies of mutants at alpha140, beta35, and beta145 tyrosine.
    Nagai M; Wajcman H; Lahary A; Nakatsukasa T; Nagatomo S; Kitagawa T
    Biochemistry; 1999 Jan; 38(4):1243-51. PubMed ID: 9930984
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural characterization of the proximal and distal histidine environment of cytoglobin and neuroglobin.
    Sawai H; Makino M; Mizutani Y; Ohta T; Sugimoto H; Uno T; Kawada N; Yoshizato K; Kitagawa T; Shiro Y
    Biochemistry; 2005 Oct; 44(40):13257-65. PubMed ID: 16201751
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heme reactivity is uncoupled from quaternary structure in gel-encapsulated hemoglobin: a resonance Raman spectroscopic study.
    Jones EM; Balakrishnan G; Spiro TG
    J Am Chem Soc; 2012 Feb; 134(7):3461-71. PubMed ID: 22263778
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of histidine 77 as the axial heme ligand of carbonmonoxy CooA by picosecond time-resolved resonance Raman spectroscopy.
    Uchida T; Ishikawa H; Ishimori K; Morishima I; Nakajima H; Aono S; Mizutani Y; Kitagawa T
    Biochemistry; 2000 Oct; 39(42):12747-52. PubMed ID: 11041838
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heme structures of five variants of hemoglobin M probed by resonance Raman spectroscopy.
    Jin Y; Nagai M; Nagai Y; Nagatomo S; Kitagawa T
    Biochemistry; 2004 Jul; 43(26):8517-27. PubMed ID: 15222763
    [TBL] [Abstract][Full Text] [Related]  

  • 16. UV resonance Raman studies of alpha-nitrosyl hemoglobin derivatives: relation between the alpha 1-beta 2 subunit interface interactions and the Fe-histidine bonding of alpha heme.
    Nagatomo S; Nagai M; Tsuneshige A; Yonetani T; Kitagawa T
    Biochemistry; 1999 Jul; 38(30):9659-66. PubMed ID: 10423244
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for sub-picosecond heme doming in hemoglobin and myoglobin: a time-resolved resonance Raman comparison of carbonmonoxy and deoxy species.
    Franzen S; Bohn B; Poyart C; Martin JL
    Biochemistry; 1995 Jan; 34(4):1224-37. PubMed ID: 7827072
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure changes in hemoglobin upon deletion of C-terminal residues, monitored by resonance Raman spectroscopy.
    Wang D; Spiro TG
    Biochemistry; 1998 Jul; 37(28):9940-51. PubMed ID: 9665699
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The conformational and dynamic basis for ligand binding reactivity in hemoglobin Ypsilanti (beta 99 asp-->Tyr): origin of the quaternary enhancement effect.
    Huang J; Juszczak LJ; Peterson ES; Shannon CF; Yang M; Huang S; Vidugiris GV; Friedman JM
    Biochemistry; 1999 Apr; 38(14):4514-25. PubMed ID: 10194373
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultraviolet resonance Raman studies of quaternary structure of hemoglobin using a tryptophan beta 37 mutant.
    Nagai M; Kaminaka S; Ohba Y; Nagai Y; Mizutani Y; Kitagawa T
    J Biol Chem; 1995 Jan; 270(4):1636-42. PubMed ID: 7829496
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.