BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 19288188)

  • 21. A tumorsphere model of glioblastoma multiforme with intratumoral heterogeneity for quantitative analysis of cellular migration and drug response.
    Gudbergsson JM; Kostrikov S; Johnsen KB; Fliedner FP; Stolberg CB; Humle N; Hansen AE; Kristensen BW; Christiansen G; Kjær A; Andresen TL; Duroux M
    Exp Cell Res; 2019 Jun; 379(1):73-82. PubMed ID: 30922921
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification of A2B5+CD133- tumor-initiating cells in adult human gliomas.
    Ogden AT; Waziri AE; Lochhead RA; Fusco D; Lopez K; Ellis JA; Kang J; Assanah M; McKhann GM; Sisti MB; McCormick PC; Canoll P; Bruce JN
    Neurosurgery; 2008 Feb; 62(2):505-14; discussion 514-5. PubMed ID: 18382330
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Gliomasphere marker combinatorics: multidimensional flow cytometry detects CD44+/CD133+/ITGA6+/CD36+ signature.
    Erhart F; Blauensteiner B; Zirkovits G; Printz D; Soukup K; Klingenbrunner S; Fischhuber K; Reitermaier R; Halfmann A; Lötsch D; Spiegl-Kreinecker S; Berger W; Visus C; Dohnal A
    J Cell Mol Med; 2019 Jan; 23(1):281-292. PubMed ID: 30467961
    [TBL] [Abstract][Full Text] [Related]  

  • 24. MALAT1 is a prognostic factor in glioblastoma multiforme and induces chemoresistance to temozolomide through suppressing miR-203 and promoting thymidylate synthase expression.
    Chen W; Xu XK; Li JL; Kong KK; Li H; Chen C; He J; Wang F; Li P; Ge XS; Li FC
    Oncotarget; 2017 Apr; 8(14):22783-22799. PubMed ID: 28187000
    [TBL] [Abstract][Full Text] [Related]  

  • 25. SPOCK1 is upregulated in recurrent glioblastoma and contributes to metastasis and Temozolomide resistance.
    Yu F; Li G; Gao J; Sun Y; Liu P; Gao H; Li P; Lei T; Chen Y; Cheng Y; Zhai X; Sayari AJ; Huang H; Mu Q
    Cell Prolif; 2016 Apr; 49(2):195-206. PubMed ID: 26923184
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Expansion of CD133-positive glioma cells in recurrent de novo glioblastomas after radiotherapy and chemotherapy.
    Tamura K; Aoyagi M; Ando N; Ogishima T; Wakimoto H; Yamamoto M; Ohno K
    J Neurosurg; 2013 Nov; 119(5):1145-55. PubMed ID: 23991844
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Selective Estrogen Receptor β Agonist LY500307 as a Novel Therapeutic Agent for Glioblastoma.
    Sareddy GR; Li X; Liu J; Viswanadhapalli S; Garcia L; Gruslova A; Cavazos D; Garcia M; Strom AM; Gustafsson JA; Tekmal RR; Brenner A; Vadlamudi RK
    Sci Rep; 2016 Apr; 6():24185. PubMed ID: 27126081
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Glioblastoma Cell Malignancy and Drug Sensitivity Are Affected by the Cell of Origin.
    Jiang Y; Marinescu VD; Xie Y; Jarvius M; Maturi NP; Haglund C; Olofsson S; Lindberg N; Olofsson T; Leijonmarck C; Hesselager G; Alafuzoff I; Fryknäs M; Larsson R; Nelander S; Uhrbom L
    Cell Rep; 2017 Jan; 18(4):977-990. PubMed ID: 28122246
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Phenotype of SHG-44 glioma stem cell spheres and pathological characteristics of their xenograft tumors].
    Wu TF; Chen JM; Chen SS; Chen GL; Wei YX; Xie XS; Du ZW; Zhou YX
    Zhonghua Zhong Liu Za Zhi; 2013 Oct; 35(10):726-31. PubMed ID: 24378091
    [TBL] [Abstract][Full Text] [Related]  

  • 30. miR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells.
    Silber J; Lim DA; Petritsch C; Persson AI; Maunakea AK; Yu M; Vandenberg SR; Ginzinger DG; James CD; Costello JF; Bergers G; Weiss WA; Alvarez-Buylla A; Hodgson JG
    BMC Med; 2008 Jun; 6():14. PubMed ID: 18577219
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tumorigenesis of chemotherapeutic drug-resistant cancer stem-like cells in brain glioma.
    Kang MK; Kang SK
    Stem Cells Dev; 2007 Oct; 16(5):837-47. PubMed ID: 17999604
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Promising survival for patients with glioblastoma multiforme treated with individualised chemotherapy based on in vitro drug sensitivity testing.
    Iwadate Y; Fujimoto S; Namba H; Yamaura A
    Br J Cancer; 2003 Nov; 89(10):1896-900. PubMed ID: 14612899
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Arrested neural and advanced mesenchymal differentiation of glioblastoma cells-comparative study with neural progenitors.
    Rieske P; Golanska E; Zakrzewska M; Piaskowski S; Hulas-Bigoszewska K; Wolańczyk M; Szybka M; Witusik-Perkowska M; Jaskolski DJ; Zakrzewski K; Biernat W; Krynska B; Liberski PP
    BMC Cancer; 2009 Feb; 9():54. PubMed ID: 19216795
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Highly infiltrative brain tumours show reduced chemosensitivity associated with a stem cell-like phenotype.
    Johannessen TC; Wang J; Skaftnesmo KO; Sakariassen PØ; Enger PØ; Petersen K; Øyan AM; Kalland KH; Bjerkvig R; Tysnes BB
    Neuropathol Appl Neurobiol; 2009 Aug; 35(4):380-93. PubMed ID: 19508445
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The neural adhesion molecule L1CAM confers chemoresistance in human glioblastomas.
    Held-Feindt J; Schmelz S; Hattermann K; Mentlein R; Mehdorn HM; Sebens S
    Neurochem Int; 2012 Dec; 61(7):1183-91. PubMed ID: 22948185
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enhanced anticancer properties of lomustine in conjunction with docosahexaenoic acid in glioblastoma cell lines.
    Harvey KA; Xu Z; Saaddatzadeh MR; Wang H; Pollok K; Cohen-Gadol AA; Siddiqui RA
    J Neurosurg; 2015 Mar; 122(3):547-56. PubMed ID: 25526274
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Proliferation of human glioblastoma stem cells occurs independently of exogenous mitogens.
    Kelly JJ; Stechishin O; Chojnacki A; Lun X; Sun B; Senger DL; Forsyth P; Auer RN; Dunn JF; Cairncross JG; Parney IF; Weiss S
    Stem Cells; 2009 Aug; 27(8):1722-33. PubMed ID: 19544433
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Arsenic trioxide sensitizes cancer stem cells to chemoradiotherapy. A new approach in the treatment of inoperable glioblastoma multiforme.
    Tomuleasa C; Soritau O; Kacso G; Fischer-Fodor E; Cocis A; Ioani H; Timis T; Petrescu M; Cernea D; Virag P; Irimie A; Florian IS
    J BUON; 2010; 15(4):758-62. PubMed ID: 21229642
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Combined expressional analysis, bioinformatics and targeted proteomics identify new potential therapeutic targets in glioblastoma stem cells.
    Stangeland B; Mughal AA; Grieg Z; Sandberg CJ; Joel M; Nygård S; Meling T; Murrell W; Vik Mo EO; Langmoen IA
    Oncotarget; 2015 Sep; 6(28):26192-215. PubMed ID: 26295306
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Increased myeloid precursors in regenerating bone marrow; implications for detection of minimal residual disease in acute myeloid leukemia.
    Zeleznikova T; Stevulova L; Kovarikova A; Babusikova O
    Neoplasma; 2007; 54(6):471-7. PubMed ID: 17949229
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.