These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 19288472)

  • 1. Methods for selecting hypervirulent biocontrol agents of weeds: why and how.
    Sands DC; Pilgeram AL
    Pest Manag Sci; 2009 May; 65(5):581-7. PubMed ID: 19288472
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of Fusarium oxysporum on broomrape (Orobanche egyptiaca) seed germination.
    Hasannejad S; Zad SJ; Alizade HM; Rahymian H
    Commun Agric Appl Biol Sci; 2006; 71(3 Pt B):1295-9. PubMed ID: 17390893
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transforming a NEP1 toxin gene into two Fusarium spp. to enhance mycoherbicide activity on Orobanche--failure and success.
    Meir S; Amsellem Z; Al-Ahmad H; Safran E; Gressel J
    Pest Manag Sci; 2009 May; 65(5):588-95. PubMed ID: 19291699
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biocontrol of foliar pathogens: mechanisms and application.
    Elad Y
    Commun Agric Appl Biol Sci; 2003; 68(4 Pt A):17-24. PubMed ID: 15149089
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fusarium infection causes genotoxic disorders and antioxidant-based damages in Orobanche spp.
    Aybeke M
    Microbiol Res; 2017 Aug; 201():46-51. PubMed ID: 28602401
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Suicidal germination for parasitic weed control.
    Zwanenburg B; Mwakaboko AS; Kannan C
    Pest Manag Sci; 2016 Nov; 72(11):2016-2025. PubMed ID: 26733056
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aspergillus alliaceus, a new potential biological control of the root parasitic weed Orobanche.
    Aybeke M; Sen B; Okten S
    J Basic Microbiol; 2014 Jul; 54 Suppl 1():S93-101. PubMed ID: 23686407
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of CMR5c and CMR12a, novel fluorescent Pseudomonas strains from the cocoyam rhizosphere with biocontrol activity.
    Perneel M; Heyrman J; Adiobo A; De Maeyer K; Raaijmakers JM; De Vos P; Höfte M
    J Appl Microbiol; 2007 Oct; 103(4):1007-20. PubMed ID: 17897205
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolites inhibiting germination of Orobanche ramosa seeds produced by Myrothecium verrucaria and Fusarium compactum.
    Andolfi A; Boari A; Evidente A; Vurro M
    J Agric Food Chem; 2005 Mar; 53(5):1598-603. PubMed ID: 15740046
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A generic theoretical model for biological control of foliar plant diseases.
    Jeger MJ; Jeffries P; Elad Y; Xu XM
    J Theor Biol; 2009 Jan; 256(2):201-14. PubMed ID: 18983855
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selection of potential antagonists against asparagus crown and root rot caused by Fusarium spp.
    Rubio-Pérez E; Molinero-Ruiz ML; Melero-Vara JM; Basallote-Ureba MJ
    Commun Agric Appl Biol Sci; 2008; 73(2):203-6. PubMed ID: 19226757
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Growth-inhibiting effects of concentrations of fusaric acid on the growth of Bacillus mojavensis and other biocontrol Bacillus species.
    Bacon CW; Hinton DM; Hinton A
    J Appl Microbiol; 2006; 100(1):185-94. PubMed ID: 16405699
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pseudomonas fluorescens and closely-related fluorescent pseudomonads as biocontrol agents of soil-borne phytopathogens.
    Couillerot O; Prigent-Combaret C; Caballero-Mellado J; Moënne-Loccoz Y
    Lett Appl Microbiol; 2009 May; 48(5):505-12. PubMed ID: 19291210
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A numerical study of combined use of two biocontrol agents with different biocontrol mechanisms in controlling foliar pathogens.
    Xu XM; Jeffries P; Pautasso M; Jeger MJ
    Phytopathology; 2011 Sep; 101(9):1032-44. PubMed ID: 21385011
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of molecular techniques to elucidate the mechanisms of action of fungal biocontrol agents: a review.
    Massart S; Jijakli HM
    J Microbiol Methods; 2007 May; 69(2):229-41. PubMed ID: 17084929
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fusarium solani species complex isolates conspecific with Fusarium solani f. sp. cucurbitae race 2 from naturally infected human and plant tissue and environmental sources are equally virulent on plants, grow at 37 degrees C and are interfertile.
    Mehl HL; Epstein L
    Environ Microbiol; 2007 Sep; 9(9):2189-99. PubMed ID: 17686017
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering hypervirulence in a mycoherbicidal fungus for efficient weed control.
    Amsellem Z; Cohen BA; Gressel J
    Nat Biotechnol; 2002 Oct; 20(10):1035-9. PubMed ID: 12355116
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gluconic acid: an antifungal agent produced by Pseudomonas species in biological control of take-all.
    Kaur R; Macleod J; Foley W; Nayudu M
    Phytochemistry; 2006 Mar; 67(6):595-604. PubMed ID: 16445952
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular-based strategies to exploit Pseudomonas biocontrol strains for environmental biotechnology applications.
    Mark G; Morrissey JP; Higgins P; O'gara F
    FEMS Microbiol Ecol; 2006 May; 56(2):167-77. PubMed ID: 16629747
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Infection of tubercles of the parasitic weed Orobanche aegyptiaca by mycoherbicidal Fusarium species.
    Cohen BA; Amsellem Z; Lev-Yadun S; Gressel J
    Ann Bot; 2002 Nov; 90(5):567-78. PubMed ID: 12466097
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.