These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 19288517)

  • 1. A high mobility group B-1 box A peptide combined with an artery wall binding peptide targets delivery of nucleic acids to smooth muscle cells.
    Han JS; Kim K; Lee M
    J Cell Biochem; 2009 May; 107(1):163-70. PubMed ID: 19288517
    [TBL] [Abstract][Full Text] [Related]  

  • 2. VEGF receptor binding peptide-linked high mobility box group-1 box A as a targeting gene carrier for hypoxic endothelial cells.
    Han JS; Kim HA; Lee S; Lee M
    J Cell Biochem; 2010 Aug; 110(5):1094-100. PubMed ID: 20564205
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression, purification and characterization of TAT-high mobility group box-1A peptide as a carrier of nucleic acids.
    Kim K; Han JS; Kim HA; Lee M
    Biotechnol Lett; 2008 Aug; 30(8):1331-7. PubMed ID: 18347754
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lung epithelial binding peptide-linked high mobility group box-1 A box for lung epithelial cell-specific delivery of DNA.
    Kim HA; Park JH; Cho SH; Lee M
    J Drug Target; 2011 Aug; 19(7):589-96. PubMed ID: 21309682
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combination of TAT-HMGB1A and R3V6 amphiphilic peptide for plasmid DNA delivery with anti-inflammatory effect.
    Kim B; Song JH; Lee M
    J Drug Target; 2014 Sep; 22(8):739-47. PubMed ID: 24830301
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High mobility group box 1 protein enhances polyethylenimine mediated gene delivery in vitro.
    Shen Y; Peng H; Deng J; Wen Y; Luo X; Pan S; Wu C; Feng M
    Int J Pharm; 2009 Jun; 375(1-2):140-7. PubMed ID: 19442462
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recombinant fusion proteins TAT-Mu, Mu and Mu-Mu mediate efficient non-viral gene delivery.
    Rajagopalan R; Xavier J; Rangaraj N; Rao NM; Gopal V
    J Gene Med; 2007 Apr; 9(4):275-86. PubMed ID: 17397090
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low molecular weight protamine as an efficient and nontoxic gene carrier: in vitro study.
    Park YJ; Liang JF; Ko KS; Kim SW; Yang VC
    J Gene Med; 2003 Aug; 5(8):700-11. PubMed ID: 12898639
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heparin-conjugated polyethylenimine for gene delivery.
    Jeon O; Yang HS; Lee TJ; Kim BS
    J Control Release; 2008 Dec; 132(3):236-42. PubMed ID: 18597881
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study of uptake of cell penetrating peptides and their cargoes in permeabilized wheat immature embryos.
    Chugh A; Eudes F
    FEBS J; 2008 May; 275(10):2403-14. PubMed ID: 18397318
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved Tat-mediated plasmid DNA transfer by fusion to LK15 peptide.
    Saleh AF; Aojula H; Arthanari Y; Offerman S; Alkotaji M; Pluen A
    J Control Release; 2010 Apr; 143(2):233-42. PubMed ID: 20060860
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synergistic effects of conjugating cell penetrating peptides and thiomers on non-viral transfection efficiency.
    Rahmat D; Khan MI; Shahnaz G; Sakloetsakun D; Perera G; Bernkop-Schnürch A
    Biomaterials; 2012 Mar; 33(7):2321-6. PubMed ID: 22169137
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recombinant derivatives of the human high-mobility group protein HMGB2 mediate efficient nonviral gene delivery.
    Sloots A; Wels WS
    FEBS J; 2005 Aug; 272(16):4221-36. PubMed ID: 16098203
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancement of gene delivery to human airway epithelial cells in vitro using a peptide from the polyoma virus protein VP1.
    Wiseman JW; Scott ES; Shaw PA; Colledge WH
    J Gene Med; 2005 Jun; 7(6):759-70. PubMed ID: 15693032
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Delivery of the high-mobility group box 1 box A peptide using heparin in the acute lung injury animal models.
    Song JH; Kim JY; Piao C; Lee S; Kim B; Song SJ; Choi JS; Lee M
    J Control Release; 2016 Jul; 234():33-40. PubMed ID: 27196743
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced nuclear import and transfection efficiency of TAT peptide-based gene delivery systems modified by additional nuclear localization signals.
    Yi WJ; Yang J; Li C; Wang HY; Liu CW; Tao L; Cheng SX; Zhuo RX; Zhang XZ
    Bioconjug Chem; 2012 Jan; 23(1):125-34. PubMed ID: 22148643
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of TAT-peptide polymerization on properties and transfection activity of TAT/DNA polyplexes.
    Soundara Manickam D; Bisht HS; Wan L; Mao G; Oupicky D
    J Control Release; 2005 Jan; 102(1):293-306. PubMed ID: 15653153
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploration of peptide motifs for potent non-viral gene delivery highly selective for dividing cells.
    Parker AL; Collins L; Zhang X; Fabre JW
    J Gene Med; 2005 Dec; 7(12):1545-54. PubMed ID: 16037993
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of a multifunctional PEG-based gene delivery system containing nuclear localization signals and endosomal escape peptides.
    Moore NM; Sheppard CL; Sakiyama-Elbert SE
    Acta Biomater; 2009 Mar; 5(3):854-64. PubMed ID: 18926782
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polymeric gene carrier for insulin secreting cells: poly(L-lysine)-g-sulfonylurea for receptor mediated transfection.
    Kang HC; Kim S; Lee M; Bae YH
    J Control Release; 2005 Jun; 105(1-2):164-76. PubMed ID: 15885844
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.