These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 19289049)

  • 1. Development of a CP 31P NMR broadline simulation methodology for studying the interactions of antihypertensive AT1 antagonist losartan with phospholipid bilayers.
    Fotakis C; Christodouleas D; Chatzigeorgiou P; Zervou M; Benetis NP; Viras K; Mavromoustakos T
    Biophys J; 2009 Mar; 96(6):2227-36. PubMed ID: 19289049
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative biophysical studies of sartan class drug molecules losartan and candesartan (CV-11974) with membrane bilayers.
    Fotakis C; Christodouleas D; Zoumpoulakis P; Kritsi E; Benetis NP; Mavromoustakos T; Reis H; Gili A; Papadopoulos MG; Zervou M
    J Phys Chem B; 2011 May; 115(19):6180-92. PubMed ID: 21520922
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interactions of the dipeptide paralysin beta-Ala-Tyr and the aminoacid Glu with phospholipid bilayers.
    Kyrikou I; Benetis NP; Chatzigeorgiou P; Zervou M; Viras K; Poulos C; Mavromoustakos T
    Biochim Biophys Acta; 2008 Jan; 1778(1):113-24. PubMed ID: 17964279
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interactions of angiotensin II non-peptide AT(1) antagonist losartan with phospholipid membranes studied by combined use of differential scanning calorimetry and electron spin resonance spectroscopy.
    Theodoropoulou E; Marsh D
    Biochim Biophys Acta; 1999 Nov; 1461(1):135-46. PubMed ID: 10556495
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Insights into the molecular basis of action of the AT1 antagonist losartan using a combined NMR spectroscopy and computational approach.
    Zervou M; Cournia Z; Potamitis C; Patargias G; Durdagi S; Grdadolnik SG; Mavromoustakos T
    Biochim Biophys Acta; 2014 Mar; 1838(3):1031-46. PubMed ID: 24374319
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A DSC and FTIR spectroscopic study of the effects of the epimeric 4-cholesten-3-ols and 4-cholesten-3-one on the thermotropic phase behaviour and organization of dipalmitoylphosphatidylcholine bilayer membranes: comparison with their 5-cholesten analogues.
    Benesch MG; Mannock DA; Lewis RN; McElhaney RN
    Chem Phys Lipids; 2014 Jan; 177():71-90. PubMed ID: 24296232
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interactions of the AT1 antagonist valsartan with dipalmitoyl-phosphatidylcholine bilayers.
    Potamitis C; Chatzigeorgiou P; Siapi E; Viras K; Mavromoustakos T; Hodzic A; Pabst G; Cacho-Nerin F; Laggner P; Rappolt M
    Biochim Biophys Acta; 2011 Jun; 1808(6):1753-63. PubMed ID: 21315062
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Membrane topology of a 14-mer model amphipathic peptide: a solid-state NMR spectroscopy study.
    Ouellet M; Doucet JD; Voyer N; Auger M
    Biochemistry; 2007 Jun; 46(22):6597-606. PubMed ID: 17487978
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of angiotensin II non-peptide AT(1) antagonist losartan on phosphatidylethanolamine membranes.
    Theodoropoulou E; Marsh D
    Biochim Biophys Acta; 2000 Dec; 1509(1-2):346-60. PubMed ID: 11118545
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal, dynamic and structural properties of drug AT1 antagonist olmesartan in lipid bilayers.
    Ntountaniotis D; Mali G; Grdadolnik SG; Halabalaki M; Skaltsounis AL; Potamitis C; Siapi E; Chatzigeorgiou P; Rappolt M; Mavromoustakos T
    Biochim Biophys Acta; 2011 Dec; 1808(12):2995-3006. PubMed ID: 21843501
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Study on the Effects of Ginsenoside Rb1 on DPPC Bilayers by Using Thermo-Raman Spectrum and DSC].
    Hui G; Liu W; Zhang JZ; Zhou TL; Wang SM; Zhao Y; Zhao B
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Aug; 35(8):2176-9. PubMed ID: 26672288
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of staphylococcal delta-lysin on the thermotropic phase behavior and vesicle morphology of dimyristoylphosphatidylcholine lipid bilayer model membranes. Differential scanning calorimetric, 31P nuclear magnetic resonance and Fourier transform infrared spectroscopic, and X-ray diffraction studies.
    Lohner K; Staudegger E; Prenner EJ; Lewis RN; Kriechbaum M; Degovics G; McElhaney RN
    Biochemistry; 1999 Dec; 38(50):16514-28. PubMed ID: 10600113
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The use of high-resolution solid-state NMR spectroscopy and differential scanning calorimetry to study interactions of anaesthetic steroids with membrane.
    Mavromoustakos T; Theodoropoulou E; Yang DP
    Biochim Biophys Acta; 1997 Aug; 1328(1):65-73. PubMed ID: 9298946
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and dynamics of phospholipids in membranes elucidated by combined use of NMR and vibrational spectroscopies.
    Akutsu H
    Biochim Biophys Acta Biomembr; 2020 Sep; 1862(9):183352. PubMed ID: 32407775
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparisons of lipid dynamics and packing in fully interdigitated monoarachidoylphosphatidylcholine and non-interdigitated dipalmitoylphosphatidylcholine bilayers: cross polarization/magic angle spinning 13C-NMR studies.
    Wu WG; Chi LM
    Biochim Biophys Acta; 1990 Jul; 1026(2):225-35. PubMed ID: 2116171
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rotation of lipids in membranes: molecular dynamics simulation, 31P spin-lattice relaxation, and rigid-body dynamics.
    Klauda JB; Roberts MF; Redfield AG; Brooks BR; Pastor RW
    Biophys J; 2008 Apr; 94(8):3074-83. PubMed ID: 18192349
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-temperature dynamical and structural properties of saturated and monounsaturated phospholipid bilayers revealed by Raman and spin-label EPR spectroscopy.
    Surovtsev NV; Ivanisenko NV; Kirillov KY; Dzuba SA
    J Phys Chem B; 2012 Jul; 116(28):8139-44. PubMed ID: 22721271
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interactions of the potent synthetic AT1 antagonist analog BV6 with membrane bilayers and mesoporous silicate matrices.
    Agelis G; Resvani A; Ntountaniotis D; Chatzigeorgiou P; Koukoulitsa C; Androutsou ME; Plotas P; Matsoukas J; Mavromoustakos T; Cendak T; Godec TU; Mali G
    Biochim Biophys Acta; 2013 Aug; 1828(8):1846-55. PubMed ID: 23506680
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential scanning calorimetry and (2)H nuclear magnetic resonance and Fourier transform infrared spectroscopy studies of the effects of transmembrane alpha-helical peptides on the organization of phosphatidylcholine bilayers.
    Paré C; Lafleur M; Liu F; Lewis RN; McElhaney RN
    Biochim Biophys Acta; 2001 Mar; 1511(1):60-73. PubMed ID: 11248205
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative study of the AT₁ receptor prodrug antagonist candesartan cilexetil with other sartans on the interactions with membrane bilayers.
    Fotakis C; Megariotis G; Christodouleas D; Kritsi E; Zoumpoulakis P; Ntountaniotis D; Zervou M; Potamitis C; Hodzic A; Pabst G; Rappolt M; Mali G; Baldus J; Glaubitz C; Papadopoulos MG; Afantitis A; Melagraki G; Mavromoustakos T
    Biochim Biophys Acta; 2012 Dec; 1818(12):3107-20. PubMed ID: 22906712
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.