BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 19289058)

  • 1. Atomistic insights into regulatory mechanisms of the HER2 tyrosine kinase domain: a molecular dynamics study.
    Telesco SE; Radhakrishnan R
    Biophys J; 2009 Mar; 96(6):2321-34. PubMed ID: 19289058
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigating Molecular Mechanisms of Activation and Mutation of the HER2 Receptor Tyrosine Kinase through Computational Modeling and Simulation.
    Telesco SE; Shih A; Liu Y; Radhakrishnan R
    Cancer Res J; 2011; 4(4):1-35. PubMed ID: 25346782
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular dynamics analysis of conserved hydrophobic and hydrophilic bond-interaction networks in ErbB family kinases.
    Shih AJ; Telesco SE; Choi SH; Lemmon MA; Radhakrishnan R
    Biochem J; 2011 Jun; 436(2):241-51. PubMed ID: 21426301
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Her4 and Her2/neu tyrosine kinase domains dimerize and activate in a reconstituted in vitro system.
    Monsey J; Shen W; Schlesinger P; Bose R
    J Biol Chem; 2010 Mar; 285(10):7035-44. PubMed ID: 20022944
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carboxyl group footprinting mass spectrometry and molecular dynamics identify key interactions in the HER2-HER3 receptor tyrosine kinase interface.
    Collier TS; Diraviyam K; Monsey J; Shen W; Sept D; Bose R
    J Biol Chem; 2013 Aug; 288(35):25254-25264. PubMed ID: 23843458
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural analysis of the mechanism of inhibition and allosteric activation of the kinase domain of HER2 protein.
    Aertgeerts K; Skene R; Yano J; Sang BC; Zou H; Snell G; Jennings A; Iwamoto K; Habuka N; Hirokawa A; Ishikawa T; Tanaka T; Miki H; Ohta Y; Sogabe S
    J Biol Chem; 2011 May; 286(21):18756-65. PubMed ID: 21454582
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glycosylation promotes the cancer regulator EGFR-ErbB2 heterodimer formation - molecular dynamics study.
    Motamedi Z; Rajabi-Maham H; Azimzadeh Irani M
    J Mol Model; 2021 Nov; 27(12):361. PubMed ID: 34817689
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphorylation sites of HER2/c-erbB-2: role in cell growth and in disease.
    Khurshid R; Saleem M; Gul-e-Raana ; Akhthar MS
    Acta Biochim Pol; 2014; 61(4):699-703. PubMed ID: 25399009
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A specific amino acid context in EGFR and HER2 phosphorylation sites enables selective binding to the active site of Src homology phosphatase 2 (SHP2).
    Hartman Z; Geldenhuys WJ; Agazie YM
    J Biol Chem; 2020 Mar; 295(11):3563-3575. PubMed ID: 32024694
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A multiscale modeling approach to investigate molecular mechanisms of pseudokinase activation and drug resistance in the HER3/ErbB3 receptor tyrosine kinase signaling network.
    Telesco SE; Shih AJ; Jia F; Radhakrishnan R
    Mol Biosyst; 2011 Jun; 7(6):2066-80. PubMed ID: 21509365
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Small molecule inhibitors targeting the EGFR/ErbB family of protein-tyrosine kinases in human cancers.
    Roskoski R
    Pharmacol Res; 2019 Jan; 139():395-411. PubMed ID: 30500458
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atomistic insights into the lung cancer-associated L755P mutation in HER2 resistance to lapatinib: a molecular dynamics study.
    Yang B; Zhang H; Wang H
    J Mol Model; 2015 Feb; 21(2):24. PubMed ID: 25620423
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutational activation of ErbB2 reveals a new protein kinase autoinhibition mechanism.
    Fan YX; Wong L; Ding J; Spiridonov NA; Johnson RC; Johnson GR
    J Biol Chem; 2008 Jan; 283(3):1588-1596. PubMed ID: 18039657
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural characterization of EGFR exon 19 deletion mutation using molecular dynamics simulation.
    Tamirat MZ; Koivu M; Elenius K; Johnson MS
    PLoS One; 2019; 14(9):e0222814. PubMed ID: 31536605
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ErbB3/HER3 intracellular domain is competent to bind ATP and catalyze autophosphorylation.
    Shi F; Telesco SE; Liu Y; Radhakrishnan R; Lemmon MA
    Proc Natl Acad Sci U S A; 2010 Apr; 107(17):7692-7. PubMed ID: 20351256
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure-based network analysis of activation mechanisms in the ErbB family of receptor tyrosine kinases: the regulatory spine residues are global mediators of structural stability and allosteric interactions.
    James KA; Verkhivker GM
    PLoS One; 2014; 9(11):e113488. PubMed ID: 25427151
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of oncogenic mutations on the conformational free-energy landscape of EGFR kinase.
    Sutto L; Gervasio FL
    Proc Natl Acad Sci U S A; 2013 Jun; 110(26):10616-21. PubMed ID: 23754386
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulation of homology models for the extracellular domains (ECD) of ErbB3, ErbB4 and the ErbB2-ErbB3 complex in their active conformations.
    Franco-Gonzalez JF; Ramos J; Cruz VL; Martínez-Salazar J
    J Mol Model; 2013 Feb; 19(2):931-41. PubMed ID: 23090500
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of activation and inhibition of the HER4/ErbB4 kinase.
    Qiu C; Tarrant MK; Choi SH; Sathyamurthy A; Bose R; Banjade S; Pal A; Bornmann WG; Lemmon MA; Cole PA; Leahy DJ
    Structure; 2008 Mar; 16(3):460-7. PubMed ID: 18334220
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Her2 activation mechanism reflects evolutionary preservation of asymmetric ectodomain dimers in the human EGFR family.
    Arkhipov A; Shan Y; Kim ET; Dror RO; Shaw DE
    Elife; 2013 Jul; 2():e00708. PubMed ID: 23878723
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.