BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 19289081)

  • 1. Nuclear export of Smad2 and Smad3 by RanBP3 facilitates termination of TGF-beta signaling.
    Dai F; Lin X; Chang C; Feng XH
    Dev Cell; 2009 Mar; 16(3):345-57. PubMed ID: 19289081
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PPM1A dephosphorylates RanBP3 to enable efficient nuclear export of Smad2 and Smad3.
    Dai F; Shen T; Li Z; Lin X; Feng XH
    EMBO Rep; 2011 Oct; 12(11):1175-81. PubMed ID: 21960005
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RanBP3 enhances nuclear export of active (beta)-catenin independently of CRM1.
    Hendriksen J; Fagotto F; van der Velde H; van Schie M; Noordermeer J; Fornerod M
    J Cell Biol; 2005 Dec; 171(5):785-97. PubMed ID: 16314428
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RanBP3 Regulates Melanoma Cell Proliferation via Selective Control of Nuclear Export.
    Pathria G; Garg B; Wagner C; Garg K; Gschaider M; Jalili A; Wagner SN
    J Invest Dermatol; 2016 Jan; 136(1):264-74. PubMed ID: 26763446
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of TGF-β signaling at the nuclear envelope: characterization of interactions between MAN1, Smad2 and Smad3, and PPM1A.
    Bourgeois B; Gilquin B; Tellier-Lebègue C; Östlund C; Wu W; Pérez J; El Hage P; Lallemand F; Worman HJ; Zinn-Justin S
    Sci Signal; 2013 Jun; 6(280):ra49. PubMed ID: 23779087
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transforming growth factor beta-independent shuttling of Smad4 between the cytoplasm and nucleus.
    Pierreux CE; Nicolás FJ; Hill CS
    Mol Cell Biol; 2000 Dec; 20(23):9041-54. PubMed ID: 11074002
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coupling of dephosphorylation and nuclear export of Smads in TGF-beta signaling.
    Dai F; Duan X; Liang YY; Lin X; Feng XH
    Methods Mol Biol; 2010; 647():125-37. PubMed ID: 20694664
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A component of the ARC/Mediator complex required for TGF beta/Nodal signalling.
    Kato Y; Habas R; Katsuyama Y; Näär AM; He X
    Nature; 2002 Aug; 418(6898):641-6. PubMed ID: 12167862
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pegylated interferon alpha targets Wnt signaling by inducing nuclear export of β-catenin.
    Thompson MD; Dar MJ; Monga SP
    J Hepatol; 2011 Mar; 54(3):506-12. PubMed ID: 21093092
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic analysis of Smad nucleocytoplasmic shuttling reveals a mechanism for transforming growth factor beta-dependent nuclear accumulation of Smads.
    Schmierer B; Hill CS
    Mol Cell Biol; 2005 Nov; 25(22):9845-58. PubMed ID: 16260601
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transforming growth factor-beta induces nuclear import of Smad3 in an importin-beta1 and Ran-dependent manner.
    Kurisaki A; Kose S; Yoneda Y; Heldin CH; Moustakas A
    Mol Biol Cell; 2001 Apr; 12(4):1079-91. PubMed ID: 11294908
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dephosphorylation of the linker regions of Smad1 and Smad2/3 by small C-terminal domain phosphatases has distinct outcomes for bone morphogenetic protein and transforming growth factor-beta pathways.
    Sapkota G; Knockaert M; Alarcón C; Montalvo E; Brivanlou AH; Massagué J
    J Biol Chem; 2006 Dec; 281(52):40412-9. PubMed ID: 17085434
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Erbin inhibits transforming growth factor beta signaling through a novel Smad-interacting domain.
    Dai F; Chang C; Lin X; Dai P; Mei L; Feng XH
    Mol Cell Biol; 2007 Sep; 27(17):6183-94. PubMed ID: 17591701
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TLP, a novel modulator of TGF-beta signaling, has opposite effects on Smad2- and Smad3-dependent signaling.
    Felici A; Wurthner JU; Parks WT; Giam LR; Reiss M; Karpova TS; McNally JG; Roberts AB
    EMBO J; 2003 Sep; 22(17):4465-77. PubMed ID: 12941698
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PPM1A functions as a Smad phosphatase to terminate TGFbeta signaling.
    Lin X; Duan X; Liang YY; Su Y; Wrighton KH; Long J; Hu M; Davis CM; Wang J; Brunicardi FC; Shi Y; Chen YG; Meng A; Feng XH
    Cell; 2006 Jun; 125(5):915-28. PubMed ID: 16751101
    [TBL] [Abstract][Full Text] [Related]  

  • 16. LEM domain-containing protein 3 antagonizes TGFβ-SMAD2/3 signaling in a stiffness-dependent manner in both the nucleus and cytosol.
    Chambers DM; Moretti L; Zhang JJ; Cooper SW; Chambers DM; Santangelo PJ; Barker TH
    J Biol Chem; 2018 Oct; 293(41):15867-15886. PubMed ID: 30108174
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Growth differentiation factor-9 signaling is mediated by the type I receptor, activin receptor-like kinase 5.
    Mazerbourg S; Klein C; Roh J; Kaivo-Oja N; Mottershead DG; Korchynskyi O; Ritvos O; Hsueh AJ
    Mol Endocrinol; 2004 Mar; 18(3):653-65. PubMed ID: 14684852
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Small C-terminal domain phosphatases dephosphorylate the regulatory linker regions of Smad2 and Smad3 to enhance transforming growth factor-beta signaling.
    Wrighton KH; Willis D; Long J; Liu F; Lin X; Feng XH
    J Biol Chem; 2006 Dec; 281(50):38365-75. PubMed ID: 17035229
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel bone morphogenetic protein signaling through Smad2 and Smad3 to regulate cancer progression and development.
    Holtzhausen A; Golzio C; How T; Lee YH; Schiemann WP; Katsanis N; Blobe GC
    FASEB J; 2014 Mar; 28(3):1248-67. PubMed ID: 24308972
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pin1 down-regulates transforming growth factor-beta (TGF-beta) signaling by inducing degradation of Smad proteins.
    Nakano A; Koinuma D; Miyazawa K; Uchida T; Saitoh M; Kawabata M; Hanai J; Akiyama H; Abe M; Miyazono K; Matsumoto T; Imamura T
    J Biol Chem; 2009 Mar; 284(10):6109-15. PubMed ID: 19122240
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.