BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

445 related articles for article (PubMed ID: 19289109)

  • 21. Demonstration of a homogeneous noncompetitive immunoassay based on bioluminescence resonance energy transfer.
    Arai R; Nakagawa H; Tsumoto K; Mahoney W; Kumagai I; Ueda H; Nagamune T
    Anal Biochem; 2001 Feb; 289(1):77-81. PubMed ID: 11161297
    [TBL] [Abstract][Full Text] [Related]  

  • 22. FRET-based in vitro assays for the analysis of SUMO protease activities.
    Tatham MH; Hay RT
    Methods Mol Biol; 2009; 497():253-68. PubMed ID: 19107423
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bioluminescence resonance energy transfer-based imaging of protein-protein interactions in living cells.
    Kobayashi H; Picard LP; Schönegge AM; Bouvier M
    Nat Protoc; 2019 Apr; 14(4):1084-1107. PubMed ID: 30911173
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Monitoring the activation state of the insulin receptor using bioluminescence resonance energy transfer.
    Boute N; Pernet K; Issad T
    Mol Pharmacol; 2001 Oct; 60(4):640-5. PubMed ID: 11562424
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sequential bioluminescence resonance energy transfer-fluorescence resonance energy transfer-based ratiometric protease assays with fusion proteins of firefly luciferase and red fluorescent protein.
    Branchini BR; Rosenberg JC; Ablamsky DM; Taylor KP; Southworth TL; Linder SJ
    Anal Biochem; 2011 Jul; 414(2):239-45. PubMed ID: 21453669
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Monitoring interactions between receptor tyrosine kinases and their downstream effector proteins in living cells using bioluminescence resonance energy transfer.
    Tan PK; Wang J; Littler PL; Wong KK; Sweetnam TA; Keefe W; Nash NR; Reding EC; Piu F; Brann MR; Schiffer HH
    Mol Pharmacol; 2007 Dec; 72(6):1440-6. PubMed ID: 17715395
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fluorescence resonance energy transfer of GFP and YFP by spectral imaging and quantitative acceptor photobleaching.
    Dinant C; van Royen ME; Vermeulen W; Houtsmuller AB
    J Microsc; 2008 Jul; 231(Pt 1):97-104. PubMed ID: 18638193
    [TBL] [Abstract][Full Text] [Related]  

  • 28. SUMO-dependent compartmentalization in promyelocytic leukemia protein nuclear bodies prevents the access of LRH-1 to chromatin.
    Chalkiadaki A; Talianidis I
    Mol Cell Biol; 2005 Jun; 25(12):5095-105. PubMed ID: 15923626
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Monitoring bacterial chemotaxis by using bioluminescence resonance energy transfer: absence of feedback from the flagellar motors.
    Shimizu TS; Delalez N; Pichler K; Berg HC
    Proc Natl Acad Sci U S A; 2006 Feb; 103(7):2093-7. PubMed ID: 16452163
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Detecting and imaging protein-protein interactions during G protein-mediated signal transduction in vivo and in situ by using fluorescence-based techniques.
    Hébert TE; Galés C; Rebois RV
    Cell Biochem Biophys; 2006; 45(1):85-109. PubMed ID: 16679566
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Combining protein complementation assays with resonance energy transfer to detect multipartner protein complexes in living cells.
    Rebois RV; Robitaille M; Pétrin D; Zylbergold P; Trieu P; Hébert TE
    Methods; 2008 Jul; 45(3):214-8. PubMed ID: 18586102
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bioluminescence resonance energy transfer: an emerging tool for the detection of protein-protein interaction in living cells.
    Gersting SW; Lotz-Havla AS; Muntau AC
    Methods Mol Biol; 2012; 815():253-63. PubMed ID: 22130997
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bioluminescence resonance energy transfer to monitor protein-protein interactions.
    Issad T; Jockers R
    Methods Mol Biol; 2006; 332():195-209. PubMed ID: 16878694
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cellular BRET assay suggests a conformational rearrangement of preformed TrkB/Shc complexes following BDNF-dependent activation.
    De Vries L; Finana F; Cachoux F; Vacher B; Sokoloff P; Cussac D
    Cell Signal; 2010 Jan; 22(1):158-65. PubMed ID: 19781635
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Self-assembled donor comprising quantum dots and fluorescent proteins for long-range fluorescence resonance energy transfer.
    Lu H; Schöps O; Woggon U; Niemeyer CM
    J Am Chem Soc; 2008 Apr; 130(14):4815-27. PubMed ID: 18338889
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Direct comparison of bioluminescence-based resonance energy transfer methods for monitoring of proteolytic cleavage.
    Dacres H; Dumancic MM; Horne I; Trowell SC
    Anal Biochem; 2009 Feb; 385(2):194-202. PubMed ID: 19026607
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Prokaryotic expression and identification of dual-fluorescence fusion proteins of small ubiquitin-like modifier and sentrin-specific protease].
    Wang X; Guo J; Wang J; Li S; Sun L; Wang X; Lü J
    Sheng Wu Gong Cheng Xue Bao; 2009 May; 25(5):701-7. PubMed ID: 19670638
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Monitoring for dynamic biological processing by intramolecular bioluminescence resonance energy transfer system using secreted luciferase.
    Otsuji T; Okuda-Ashitaka E; Kojima S; Akiyama H; Ito S; Ohmiya Y
    Anal Biochem; 2004 Jun; 329(2):230-7. PubMed ID: 15158481
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Assembly and signaling of CRLR and RAMP1 complexes assessed by BRET.
    Héroux M; Breton B; Hogue M; Bouvier M
    Biochemistry; 2007 Jun; 46(23):7022-33. PubMed ID: 17503773
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Subcellular dynamic imaging of protein-protein interactions in live cells by bioluminescence resonance energy transfer.
    Perroy J
    Methods Mol Biol; 2010; 591():325-33. PubMed ID: 19957139
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.