BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 19289124)

  • 1. Intercellular exchange of proteins: the immune cell habit of sharing.
    Rechavi O; Goldstein I; Kloog Y
    FEBS Lett; 2009 Jun; 583(11):1792-9. PubMed ID: 19289124
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exchanges of membrane patches (trogocytosis) split theoretical and actual functions of immune cells.
    LeMaoult J; Caumartin J; Carosella ED
    Hum Immunol; 2007 Apr; 68(4):240-3. PubMed ID: 17400058
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exosomes: proteomic insights and diagnostic potential.
    Simpson RJ; Lim JW; Moritz RL; Mathivanan S
    Expert Rev Proteomics; 2009 Jun; 6(3):267-83. PubMed ID: 19489699
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intercellular transfer mediated by tunneling nanotubes.
    Gerdes HH; Carvalho RN
    Curr Opin Cell Biol; 2008 Aug; 20(4):470-5. PubMed ID: 18456488
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective block of tunneling nanotube (TNT) formation inhibits intercellular organelle transfer between PC12 cells.
    Bukoreshtliev NV; Wang X; Hodneland E; Gurke S; Barroso JF; Gerdes HH
    FEBS Lett; 2009 May; 583(9):1481-8. PubMed ID: 19345217
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Can membrane nanotubes facilitate communication between immune cells?
    Onfelt B; Davis DM
    Biochem Soc Trans; 2004 Nov; 32(Pt 5):676-8. PubMed ID: 15493985
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physical transfer of membrane and cytoplasmic components as a general mechanism of cell-cell communication.
    Niu X; Gupta K; Yang JT; Shamblott MJ; Levchenko A
    J Cell Sci; 2009 Mar; 122(Pt 5):600-10. PubMed ID: 19208767
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tunneling nanotube (TNT)-like structures facilitate a constitutive, actomyosin-dependent exchange of endocytic organelles between normal rat kidney cells.
    Gurke S; Barroso JF; Hodneland E; Bukoreshtliev NV; Schlicker O; Gerdes HH
    Exp Cell Res; 2008 Dec; 314(20):3669-83. PubMed ID: 18845141
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms of cellular communication through intercellular protein transfer.
    Ahmed KA; Xiang J
    J Cell Mol Med; 2011 Jul; 15(7):1458-73. PubMed ID: 20070437
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tunneling nanotubes: a new route for the exchange of components between animal cells.
    Gerdes HH; Bukoreshtliev NV; Barroso JF
    FEBS Lett; 2007 May; 581(11):2194-201. PubMed ID: 17433307
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ligand binding but undetected functional response of FcR after their capture by T cells via trogocytosis.
    Hudrisier D; Clemenceau B; Balor S; Daubeuf S; Magdeleine E; Daëron M; Bruhns P; Vié H
    J Immunol; 2009 Nov; 183(10):6102-13. PubMed ID: 19841164
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proteome analysis of rat bone marrow mesenchymal stem cell subcultures.
    Celebi B; Elçin YM
    J Proteome Res; 2009 May; 8(5):2164-72. PubMed ID: 19323533
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highlights of a new type of intercellular communication: microvesicle-based information transfer.
    Pap E; Pállinger E; Pásztói M; Falus A
    Inflamm Res; 2009 Jan; 58(1):1-8. PubMed ID: 19132498
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Secretome-based proteomic profiling of Ras-transformed MDCK cells reveals extracellular modulators of epithelial-mesenchymal transition.
    Mathias RA; Wang B; Ji H; Kapp EA; Moritz RL; Zhu HJ; Simpson RJ
    J Proteome Res; 2009 Jun; 8(6):2827-37. PubMed ID: 19296674
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exosomes--vesicular carriers for intercellular communication.
    Simons M; Raposo G
    Curr Opin Cell Biol; 2009 Aug; 21(4):575-81. PubMed ID: 19442504
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Large-scale proteomic analysis of tyrosine-phosphorylation induced by T-cell receptor or B-cell receptor activation reveals new signaling pathways.
    Matsumoto M; Oyamada K; Takahashi H; Sato T; Hatakeyama S; Nakayama KI
    Proteomics; 2009 Jul; 9(13):3549-63. PubMed ID: 19609962
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Prevention of cancer and the dose-effect relationship: the carcinogenic effects of ionizing radiations].
    Tubiana M
    Cancer Radiother; 2009 Jul; 13(4):238-58. PubMed ID: 19539515
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Introducing a new parameter for quality control of proteome profiles: consideration of commonly expressed proteins.
    Slany A; Haudek VJ; Gundacker NC; Griss J; Mohr T; Wimmer H; Eisenbauer M; Elbling L; Gerner C
    Electrophoresis; 2009 Apr; 30(8):1306-28. PubMed ID: 19382132
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteomics of regulated secretory organelles.
    Brunner Y; Schvartz D; Couté Y; Sanchez JC
    Mass Spectrom Rev; 2009; 28(5):844-67. PubMed ID: 19301366
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative analysis of cellular proteome alterations in human influenza A virus-infected mammalian cell lines.
    Vester D; Rapp E; Gade D; Genzel Y; Reichl U
    Proteomics; 2009 Jun; 9(12):3316-27. PubMed ID: 19504497
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.