These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
217 related articles for article (PubMed ID: 19289131)
1. HIV-1 reverse transcriptase can simultaneously engage its DNA/RNA substrate at both DNA polymerase and RNase H active sites: implications for RNase H inhibition. Beilhartz GL; Wendeler M; Baichoo N; Rausch J; Le Grice S; Götte M J Mol Biol; 2009 May; 388(3):462-74. PubMed ID: 19289131 [TBL] [Abstract][Full Text] [Related]
2. Transient kinetic analyses of the ribonuclease H cleavage activity of HIV-1 reverse transcriptase in complex with efavirenz and/or a β-thujaplicinol analogue. Herman BD; Sluis-Cremer N Biochem J; 2013 Oct; 455(2):179-84. PubMed ID: 23927736 [TBL] [Abstract][Full Text] [Related]
3. HIV-1 Reverse Transcriptase Polymerase and RNase H (Ribonuclease H) Active Sites Work Simultaneously and Independently. Li A; Li J; Johnson KA J Biol Chem; 2016 Dec; 291(51):26566-26585. PubMed ID: 27777303 [TBL] [Abstract][Full Text] [Related]
4. Mutations within the primer grip region of HIV-1 reverse transcriptase result in loss of RNase H function. Palaniappan C; Wisniewski M; Jacques PS; Le Grice SF; Fay PJ; Bambara RA J Biol Chem; 1997 Apr; 272(17):11157-64. PubMed ID: 9111014 [TBL] [Abstract][Full Text] [Related]
5. Mutation of amino acids in the connection domain of human immunodeficiency virus type 1 reverse transcriptase that contact the template-primer affects RNase H activity. Julias JG; McWilliams MJ; Sarafianos SG; Alvord WG; Arnold E; Hughes SH J Virol; 2003 Aug; 77(15):8548-54. PubMed ID: 12857924 [TBL] [Abstract][Full Text] [Related]
6. Template-primer binding affinity and RNase H cleavage specificity contribute to the strand transfer efficiency of HIV-1 reverse transcriptase. Luczkowiak J; Matamoros T; Menéndez-Arias L J Biol Chem; 2018 Aug; 293(35):13351-13363. PubMed ID: 29991591 [TBL] [Abstract][Full Text] [Related]
7. Coordination between the polymerase and RNase H activity of HIV-1 reverse transcriptase. Figiel M; Krepl M; Poznanski J; Golab A; Šponer J; Nowotny M Nucleic Acids Res; 2017 Apr; 45(6):3341-3352. PubMed ID: 28108662 [TBL] [Abstract][Full Text] [Related]
8. Effects of mutations in the polymerase domain on the polymerase, RNase H and strand transfer activities of human immunodeficiency virus type 1 reverse transcriptase. Gao HQ; Boyer PL; Arnold E; Hughes SH J Mol Biol; 1998 Apr; 277(3):559-72. PubMed ID: 9533880 [TBL] [Abstract][Full Text] [Related]
9. Dissecting the effects of DNA polymerase and ribonuclease H inhibitor combinations on HIV-1 reverse-transcriptase activities. Shaw-Reid CA; Feuston B; Munshi V; Getty K; Krueger J; Hazuda DJ; Parniak MA; Miller MD; Lewis D Biochemistry; 2005 Feb; 44(5):1595-606. PubMed ID: 15683243 [TBL] [Abstract][Full Text] [Related]
10. Structure of HIV-1 reverse transcriptase cleaving RNA in an RNA/DNA hybrid. Tian L; Kim MS; Li H; Wang J; Yang W Proc Natl Acad Sci U S A; 2018 Jan; 115(3):507-512. PubMed ID: 29295939 [TBL] [Abstract][Full Text] [Related]
11. Similarities and differences in the RNase H activities of human immunodeficiency virus type 1 reverse transcriptase and Moloney murine leukemia virus reverse transcriptase. Gao HQ; Sarafianos SG; Arnold E; Hughes SH J Mol Biol; 1999 Dec; 294(5):1097-113. PubMed ID: 10600369 [TBL] [Abstract][Full Text] [Related]
12. Localization of the active site of HIV-1 reverse transcriptase-associated RNase H domain on a DNA template using site-specific generated hydroxyl radicals. Götte M; Maier G; Gross HJ; Heumann H J Biol Chem; 1998 Apr; 273(17):10139-46. PubMed ID: 9553061 [TBL] [Abstract][Full Text] [Related]
13. Developing and Evaluating Inhibitors against the RNase H Active Site of HIV-1 Reverse Transcriptase. Boyer PL; Smith SJ; Zhao XZ; Das K; Gruber K; Arnold E; Burke TR; Hughes SH J Virol; 2018 Jul; 92(13):. PubMed ID: 29643235 [TBL] [Abstract][Full Text] [Related]
15. Cutting into the Substrate Dominance: Pharmacophore and Structure-Based Approaches toward Inhibiting Human Immunodeficiency Virus Reverse Transcriptase-Associated Ribonuclease H. Wang L; Sarafianos SG; Wang Z Acc Chem Res; 2020 Jan; 53(1):218-230. PubMed ID: 31880912 [TBL] [Abstract][Full Text] [Related]
16. Altering the RNase H primer grip of human immunodeficiency virus reverse transcriptase modifies cleavage specificity. Rausch JW; Lener D; Miller JT; Julias JG; Hughes SH; Le Grice SF Biochemistry; 2002 Apr; 41(15):4856-65. PubMed ID: 11939780 [TBL] [Abstract][Full Text] [Related]
17. RNase H activity of reverse transcriptases on substrates derived from the 5' end of retroviral genome. Ben-Artzi H; Zeelon E; Amit B; Wortzel A; Gorecki M; Panet A J Biol Chem; 1993 Aug; 268(22):16465-71. PubMed ID: 7688365 [TBL] [Abstract][Full Text] [Related]
18. Reverse transcriptase.RNase H from the human immunodeficiency virus. Relationship of the DNA polymerase and RNA hydrolysis activities. Furfine ES; Reardon JE J Biol Chem; 1991 Jan; 266(1):406-12. PubMed ID: 1702425 [TBL] [Abstract][Full Text] [Related]
19. Double-stranded RNA-dependent RNase activity associated with human immunodeficiency virus type 1 reverse transcriptase. Ben-Artzi H; Zeelon E; Gorecki M; Panet A Proc Natl Acad Sci U S A; 1992 Feb; 89(3):927-31. PubMed ID: 1371014 [TBL] [Abstract][Full Text] [Related]
20. Interaction of retroviral reverse transcriptase with template-primer duplexes during replication. Arts EJ; Le Grice SF Prog Nucleic Acid Res Mol Biol; 1998; 58():339-93. PubMed ID: 9308371 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]